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1 Introduction

The production function is a fundamental component of many economic models, and its

estimates can be used to study patterns of productivity heterogeneity, returns to scale, and

market power. Estimation of the production function is constrained by endogeneity bias

from unobserved productivity. The most popular methods for correcting this source of bias

impose strict structural assumptions on the functional form of production and restrictions on

the number of unobservables in the model. This paper proposes a nonparametric estimation

procedure that is robust to these unobservables and captures heterogeneity in firm behavior,

which is not found in standard models. My model allows for nonseparability of productivity

in the production function and input demand functions. It also allows for nonseparable

unobservables beyond the productivity term, which I show to be an important determinant

in heterogeneous firm-level estimates. Unlike previous approaches, the structural features

of interest are all nonparametrically identified. This contribution is important because the

parametric specification used in previous models rely on data that is often not available to

researchers.

This paper uses the nonseparability of unobservables to illustrate the importance of cap-

turing the interactions between inputs and productivity. For example, this is used to show

that estimates of output elasticities vary over the productivity levels of a firm. It is also

used to provide empirical evidence on the non-Hicks neutral effects of productivity, which is

shown to vary with respect to firm characteristics, such as their input demand size. Nonsep-

arability of unobservables in the input demand functions are also important and this paper

reveals heterogeneous input adjustments with respect to productivity changes. In addition,

a flexible productivity evolution process is used to show asymmetric persistence with re-

spect to realizations in productivity shocks at different productivity histories. In contrast,

the standard production function approaches assume separability of the unobservables and

place more emphasis on addressing the simultaneity bias from unobserved productivity un-

der various timing assumptions on firm input decisions. These proxy variable approaches

use a firm’s input demand function, which is assumed to be strictly increasing in unobserved

productivity. The function is inverted so that productivity can be expressed using observed

variables. This is then substituted into the production function, which is estimated in a

two-step approach.

This approach was introduced by Olley and Pakes (1996) (hereafter OP) who consider a

dynamic optimization problem of a firm who chooses investment to maximize long-run ex-

pected profits, and an exit rule which depends on its sell-off value. The investment demand
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function depends on state variables such as capital stock and unobserved productivity. They

show that for positive investment levels this function is invertible in productivity. Their

other contribution is correcting a sample selection problem, which is generated by the firm’s

optimal exit rule. They characterize an equilibrium in which a firm exits the market if their

productivity drops below a threshold value determined by its state variables. The selection

problem biases estimates of the elasticities corresponding to the state variables. The correc-

tion for this is to include the survival probabilities, estimated from a probit regression, as an

additional argument in the productivity process for the second stage estimation procedure.

There are two disadvantages to this approach. First, the monotonicity assumption re-

quires discarding observations for which investment is zero. In many plant-level datasets,

such as the manufacturing census conducted by Chile, investment levels are often truncated

at zero due to high adjustment costs. Second is a violation of the scalar unobservability

assumption, which requires that productivity be the only unobservable in the investment

demand function. This violation is not unique to their approach and is a common source

of identification failure in the proxy variable literature. Intuitively, if there were additional

unobservables in the investment demand function, then productivity cannot be expressed as

a function of observed variables alone.

Levinsohn and Petrin (2003) (hereafter LP) address the first challenge by providing con-

ditions for which an intermediate input demand function, such as materials, energy, or fuels,

is strictly increasing in productivity. This function is used to express productivity as a func-

tion of the observed variables. Since many plants report positive use of intermediate inputs,

this eliminates the need to discard observations with zero investment levels. Their approach

thereafter is similar to OP. They estimate the parameters corresponding to labor in the first

stage and state variables in the second stage. An issue with this approach is that if labor

is a variable input (chosen to maximize short-run profits), then it is a function of the state

variables capital and productivity. This is problematic because productivity is inverted as a

function of the same conditioning variables. There exist only specific data-generating pro-

cesses that can break this functional dependence problem. The paper by Ackerberg et al.

(2015) (hereafter ACF) provide scenarios in which labor can be identified in the first stage.

They propose conditioning on labor in the intermediate input demand function to avoid

non-identification of the labor coefficient. This precludes identification in the first stage. In-

stead, it is included in the second stage with the state variables. This alternative procedure

suggests that labor can be chosen prior to or simultaneously as the intermediate inputs. For

example, firms will only use certain amounts of material inputs if they know there will be

enough workers to utilize them.
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The appeal of the control function approaches are its computational simplicity and in-

terpretable timing conditions on input decisions. First stage estimates can be obtained by

a polynomial regression and the second stage consists of a nonlinear Generalized Method of

Moments (GMM) estimator. The current direction in this literature addresses identification

of the model when the input demand functions contain additional unobservables as well as

the issue of model specification and its implications for production function estimates.

Invertibility of productivity from the proxy variables is not possible if there are unob-

served variables such as demand shocks, input prices, or measurement error. In the OP

approach, if the investment demand function contained other unobservables, researchers

would not be able to infer values of productivity from different levels of investment. Exam-

ples of shocks affecting investment demand include adjustment costs, optimization error, or

shocks to product demand. Inversion of multi-dimensional unobservables may be possible

if one observes additional proxies, but data on suitable proxies is often not available.1 The

same issue is encountered when intermediate inputs are used as the proxy variable in the LP

and ACF framework. Other unobservables, such as measurement error in capital, also poses

a serious identification problem since the measurement error appears in both the first and

second stage equations nonparametrically. Kim et al. (2016) allow for measurement error in

capital and other inputs using identification arguments from Hu and Schennach (2008) in

the proxy variable framework. Hu et al. (2020) (hereafter HHS) take a similar identification

approach, but propose an alternative GMM estimator.

Controlling for additional unobservables may reduce some of the unexplained heterogene-

ity across firms, however there is still a large amount of variation that is left unmodeled. Part

of this variation can be accounted for by model specification. The proxy variable approaches

typically use a Cobb-Douglas production function with Hicks-neutral productivity. One im-

plication of this specification is that capital shares are assumed constant across firms, which

is often rejected by empirical evidence. Some researchers have addressed this by augmenting

the parametric specification using firm-specific production functions in a random-coefficient

framework.2 Nonparametric estimation, such as the procedure proposed by Gandhi et al.

(2020) also show that choice of the production function is important. The proxy variable

approach is subject to under-identification due to an instrument-irrelevance problem using

a gross-output production function. A value-added model may avoid this critique, however

estimates recovered from value-added are fundamentally different from gross-output since

1For example, Ackerberg et al. (2007) shows that when a demand shock enters the investment function,
a firm’s pricing decision would be needed to proxy for the additional unobservable and productivity.

2See for example Kasahara et al. (2017), Balat et al. (2018) and Li and Sasaki (2017).
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the latter conditions on intermediate inputs. Estimates of TFP and its dispersion ratios

will appear more variable using a value-added production function. Their model can be

estimated nonparametrically if the productivity term is Hicks-neutral.

The assumption of a Hicks-neutral productivity term implies that technological improve-

ments are not factor-specific. This assumption is difficult to justify empirically, as pro-

ductivity can be biased towards favoring inputs like labor. Labor-augmenting productivity

is an important component to economic models of growth. Therefore, understanding the

sources of labor productivity and its heterogeneity, can help explain recent patterns of eco-

nomic growth, as well as the phenomenon of decreasing labor’s share of GDP. Despite its

importance, recovering estimates of labor-augmenting productivity is an econometric chal-

lenge. To obtain consistent estimates of the production function, the econometrician must

be able to correct endogeneity bias with multi-dimensional productivity. Doraszelski and

Jaumandreu (2018) suggest an approach that uses the input mix of a firm to invert for

factor-augmenting productivity. They use the ratio of material to labor inputs to proxy for

the labor-augmenting term, then solve the remaining endogeneity from the Hicks-neutral

term by an extension of the proxy variable approach. Their empirical strategy relies on a

parametric specification for the production function, so that the decision rules of labor and

materials can be expressed as a known function of the data, which include wages, input

prices, and output prices. Data at this level is often not available to researchers. It remains

to be seen whether similar factor-augmenting estimates can be captured in applications with

fewer data requirements while also considering the econometric issues of simultaneity bias

and unobservables in the proxy variables.

The identification approach accommodates a productivity process that is nonseparable

in innovation shocks. This allows for a current shock to a firm’s productivity to change the

persistence of previous productivity shocks on future productivity. For example, a firm’s

history of high productivity may not matter for future productivity if they are hit with

a large, negative productivity shock as opposed to a large positive shock. These types

of asymmetries are a feature of business cycle fluctuations and a large body of literature

have assessed the role of uncertainty in generating these observed patterns. The seminal

paper of Bloom (2009) studies the impact of productivity shocks on firms’ decisions for

hiring and investment. His paper primarily focuses on macro-level shocks and assumes a

stochastic volatility process for both macro-level and firm-level business conditions, which are

assumed to follow a two-point Markov chain: One state where business conditions are good

(expansion) and one where they are bad (recession). Bloom et al. (2018) focuses primarily

on microeconomic uncertainty and assumes a time-varying process for the volatility in firm
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productivity. They find that uncertainty in the idiosyncratic productivity process leads to a

significant drop in labor and investment, and an increase in the misallocation of labor. These

factors contribute to a fall in output driven by the increase in uncertainty. Salgado et al.

(2019) argue that business cycles are also characterized by changes in third-order moments

of productivity (skewness). They show that a change in skewness of firm-level shocks from

positive to negative leads to a decrease in investment and output that is more persistent

than a change in volatility alone. These papers assume a processes for firm-level shocks

that vary over time, but not between firms. The role of asymmetry in productivity histories

remains largely unexamined. This paper assumes a productivity process with a general form

of conditional heteroskedasticity. Therefore, productivity shocks can exhibit unrestricted

volatility and skewness, in addition to changes in its fourth moment (kurtosis) at various

points on its conditional distribution.

In this paper, my goal is to provide a framework for identification and estimation of a

nonseparable production function and productivity process when there are unobservables in

the proxy variables. These dimensions will allow me to examine heterogeneous effects in

firm technology, productivity, and input usage. I propose an identification strategy that is

an extension of HHS, which uses inputs as instrumental variables (IVs) in the framework of

the non-classical measurement error model developed by Hu and Schennach (2008). Their

approach uses conditional independence arguments and nonparametric rank conditions to

show validity of a proxy variable as an IV for another variable. It is important to note

that the identification results of Hu and Schennach (2008) can be applied to nonseparable

models, however HHS pursue an alternative strategy by assuming a Cobb-Douglas production

function and input demand functions that are additive in unobservables (productivity plus

demand shocks). This facilitates less restrictive conditions for identification such as the rank

condition, which is difficult to verify in practice. In addition, their model trivially satisfies a

normalization assumption on the error term, which for nonseparable models, would require

centering a subset of parameters. Their assumptions motivate the construction of a GMM

estimator, which relies crucially on the separability of error terms in the model. However, one

could question the structural conditions for which the input demand functions are additive

in their unobservables. Therefore, a more flexible specification may alleviate these concerns

although at the cost of higher-level econometric assumptions. In my paper, these assumptions

are needed, however the advantage is that I can consider a richer set of estimates for the

production function that has not been captured in previous approaches.

Unlike the GMM estimator proposed by HHS, I propose an estimator that can accom-

modate nonseparability of the production function in addition to unobservables in the proxy
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variables. The first extension allows me to capture the non-Hicks neutral effects of produc-

tivity. The nonparametric specification I consider does not require a parametric inversion

strategy to capture these effects. Since I use inputs as IVs, prices are not needed to invert

for productivity. I interpret the interactions between productivity and the inputs as a factor

efficiency effect, which is calculated as average derivatives of the production function with

respect to inputs and productivity. The second extension allows for heterogeneity in firm

input responses with respect to changes in their productivity. For example, firms may have

heterogeneous responses in their hiring decisions due to an increase in automation. I also

examine how firms adjust their inputs in response to latest changes in their productivity

across the entire distribution of input demand. In order to capture the full extent of these

heterogeneous responses, I adopt a quantile regression framework using the estimation pro-

cedure proposed by Arellano et al. (2017), which in turn, is an adaption of Arellano and

Bonhomme (2016) and Wei and Carroll (2009) to nonlinear models with time-varying unob-

servables. This framework allows me to flexibly model conditional distributions, which are

used to draw values of productivity from its posterior distribution in a sequential algorithm.

My empirical results show that nonseparability of unobservables are an important deter-

minant in heterogeneous firm-level estimates. I show that estimates of the output elasticities

vary with respect to productivity levels and the size of input demands for capital, labor, and

materials. For example, I find that capital elasticity exhibits high variation with respect to

changes in productivity, which cannot be found in previous production function approaches.

For the non-Hicks neutral effects, I find that large firms and firms with high levels of cap-

ital intensity tend to be more productive than smaller, less capital intensive firms. I also

show firms’ heterogeneous input adjustments with respect to productivity changes. For in-

vestment and labor adjustments, I find some firms’ positive or negative adjustments with

respect to productivity levels for different sizes of investment and labor demand. Finally, I

show asymmetric impacts of negative and positive innovation shocks at different histories of

productivity on future productivity and input demand. For example, I find that low invest-

ment firms decrease capital investment faster in response to a large negative productivity

shock compared to high investment firms whose adjustments are more gradual.

I introduce the economic model and its restrictions in Section 2. In Section 3, I dis-

cuss nonparametric identification. In Section 4 and 5, I discuss estimation based on the

econometric restrictions and its implementation. In Section 6, I apply this estimator to U.S.

manufacturing firms. Section 7 concludes and provides direction for future research.
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2 The Model of Firm Production

In this section, I outline the model for the production function, productivity process, flexible

inputs, and investment decisions.

2.1 Production Function with Nonseparable Unobservables

Consider a nonlinear model for a firm’s gross-output production function (in logs) given by

yit = ft(kit, lit,mit, ωit, ηit), (1)

where yit is firm i’s output at time t, kit denotes capital, lit denotes labor, which can be

flexibly chosen or dynamic, and mit denotes material inputs. The unobserved productivity

is denoted by ωit, which is correlated to input choices of the firm. The unobserved produc-

tion shocks are denoted by ηit, which are assumed to be independent of input choices and

productivity. The production function, ft, is assumed to be strictly increasing in ηit and can

vary over time.

The rank of the unobservable production shock ηit, determines the ranking of a firm

on the conditional distribution of output. This provides a Skorohod representation of the

production function, which is important for developing the econometric restrictions of the

model because they are based on conditional quantiles. This representation will also be used

for the productivity equation and the input demand functions. Without loss of generality, I

re-write the specification for the production function as

yit = Qy
t (kit, lit,mit, ωit, ηit), ηit|kit, lit,mit, ωit ∼ Uniform(0, 1), (2)

where Qy
t denotes the conditional quantile function of output. The productivity term en-

ters the production function nonseparably so that interactions between this term and the

inputs capture non-Hicks neutral factor efficiency effects. These will be estimated as average

derivatives of the production function, which can be interpreted as the increase/decrease

in marginal product when there is a small change in productivity levels. I summarize the

restrictions on the production function with the following assumptions:

8



Assumption 2.1 (Production Function)

(a) The unanticipated production shocks ηit is independent of ηis for all t 6= s conditional

on (kit, lit,mit, ωit).

(b) The unanticipated production shock ηit follows a standard uniform distribution inde-

pendent of (kit, lit,mit, ωit).

(c) τ → Qy
t (kit, lit,mit, ωit, τ) is strictly increasing on (0, 1).

2.2 Productivity

Productivity, ωit, is assumed to evolve according to a first-order Markov process:

ωit = Qω
t (ωit−1, ξit), ξit|ωit−1 ∼ Uniform(0, 1), (3)

where ξi1, . . . , ξiT are independent uniform random variables, which represent innovation

shocks to productivity. This specification is not standard in the proxy variable literature. A

productivity process which is additive in the innovation shocks are necessary to form condi-

tional moment restrictions in the proxy variable framework. The error term in those models

are the differences between realized productivity and the firm’s expected productivity. If the

true model of productivity is that of Equation (3), then the proxy variable approach would

lead to inefficient estimates of the production function. The contribution of nonseparability

in the innovation shock is that firm’s expectations of future productivity can vary with the

size of unanticipated shocks. This specification may better capture the nature of heteroge-

neous productivity evolution and I use it to show firms’ heterogeneous investment and labor

responses similar to Bloom et al. (2018). It is also likely that firm characteristics play a role

in shaping responses to productivity shocks. I consider an extension to endogenous produc-

tivity evolution by considering firm knowledge investment from R&D activities similar to

Doraszelski and Jaumandreu (2013). To this end, I consider the alternative specification for

productivity

ωit = Qω
t (ωit−1, rit−1, ξit), ξit|ωit−1, rit−1 ∼ Uniform(0, 1), (4)

where rit−1 denotes R&D expenditures. In this model, ξit captures the uncertainties in

productivity and the R&D process, which I model as

rit = Qr
t (kit, ωit, %it), %it|kit, ωit ∼ Uniform(0, 1), (5)

9



where %it captures unobserved factors affecting R&D. This extension allows me to examine

productivity heterogeneity between firms that perform R&D and those who do not. More

specifically, I show that returns to productivity vary between firms subjected to different

shocks in the productivity and R&D processes.

Industries with substantial periods of restructuring are also characterized by entry and

exit of firms due to changes in future expected productivity levels. Therefore, artificially

balancing the data may lead to selection bias if firm’s beliefs about future productivity

is partially determined by their current productivity. OP show a particular form of bias

in the production function estimates in the presence of non-random exit. It is not straight-

forward to characterize the bias in a nonseparable quantile model, and the tools for correcting

selection in these models are still in development. Arellano and Bonhomme (2017) have made

significant progress in this regard and propose a selection correction with cross-sectional data.

In Appendix D.3, I propose a strategy to correct for non-random exit using their framework.

The main contribution of this extension is to show that sample selection may affect the entire

distribution of productivity. To summarize the restrictions on productivity, I provide the

following assumptions:

Assumption 2.2 (Productivity)

(a) The productivity innovation shocks ξit are independent of ξis for all t 6= s conditional

on ωit−1

(b) ξit follows a standard uniform distribution independent of previous period productivity

ωit−1.

(c) τ → Qω
t (ωit−1, τ) is strictly increasing on (0, 1).

2.3 Flexible Inputs

The firm chooses labor and intermediate inputs to maximize short-term profits. Since I do

not restrict the functional form of the production function, it is not necessary to characterize

the input decisions as a parametric function of the state variables. Accordingly, I specify the

following labor decision rule:

lit = Q`
t(kit, ωit, ε`,it), ε`,it|kit, ωit ∼ Uniform(0, 1), (6)
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where ε`,it are i.i.d. and independent of current period state variables. The additional unob-

servable captures sources of labor demand variation across firms. Using this representation,

it is not necessary to describe the distinct sources of heterogeneity across firms; although

these can include wages, labor adjustment costs, and other demand shocks to labor. Instead,

I interpret it as the ranking index of the firm on the conditional labor distribution. A higher

τ ∈ (0, 1) corresponds to a firm who uses more labor conditional on capital and productivity

than a firm with low τ index. With this representation, I can estimate the effects of pro-

ductivity on labor usage. This is important for understanding how firm’s hiring decisions

are affected by technological developments such as an increase in automation. I can also

consider the case where labor is a dynamic decision variable. This can arise when there are

significant hiring/firing costs or industries with high turn-over and employment contracts.

A dynamic decision rule for labor can be written as:

lit = Q`
t(kit, lit−1, ωit, ε`,it), ε`,it|kit, lit−1, ωit ∼ Uniform(0, 1), (7)

where again, ε`,it are i.i.d. and independent of current period state variables including

previous labor decisions. In Appendix D.2, I show how this model can be used to capture

employment decisions in response to adjustment shocks to labor. This is important from a

policy perspective for examining unemployment responses to structural changes, which can

depend on the magnitude of the shock as well as the size of the firm’s labor force.

The firm chooses intermediate inputs to maximize profits. The decision rule is given by:

mit = Qm
t (kit, lit, ωit, εm,it), εm,it|kit, lit, ωit ∼ Uniform(0, 1), (8)

where εm,it are i.i.d. and independent of current period state variables. I assume material

inputs are chosen simultaneously or after labor decisions are made. This is to be consistent

with the specification for dynamic labor mentioned earlier. The assumptions on the flexible

inputs are summarized as follows:

Assumption 2.3 (Flexible Inputs)

(a) The unobserved input demand shocks ε`,it and εm,it are mutually independent over time

conditional on (kit, ωit) and (kit, lit, ωit) respectively.

(b) ε`,it and εm,it follow a standard uniform distribution independent of (kit, ωit) and (kit, lit, ωit),

respectively.

(c) τ → Q`
t(kit, ωit, τ) and τ → Qm

t (kit, lit, ωit, τ) are strictly increasing on (0, 1).
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2.4 Investment

Investment decisions are the solution to a long-run expected profit maximization problem:

Iit = ιt(Kit, ωit) = argmax
It≥0

[
Πt(Kit, ωit)− c(Iit, ωit) + βE

[
Vt+1(Kit+1, ωit+1)|It

]]
, (9)

where Πt(·) is current period profits as a function of the state variables. Current costs to

investment are given by c(·, ·), β is the firm’s discount factor, and It is the information

available to the firm when making investment decisions. I introduce an empirical investment

rule (in logs) for (9) given by

iit = Qi
t(kit, ωit, ζit), ζit|kit, ωit ∼ Uniform(0, 1). (10)

One possible interpretation for ζit is a shock to investment demand that increases the

marginal productivity of capital. In the case where there are many zero observations of

investment, I can write a censored version as i∗it = max{0, iit}. Although this is not the case

in the data considered in this paper, allowing for censoring in investment would be crucial

for extending this methodology to other empirical applications. This is easily implemented

in my quantile modelling due to the equivariance property of quantiles. Capital accumulates

according to the following generalized law of motion

Kit = κ(Kit−1, Iit−1, υit−1). (11)

Under this specification, capital is determined in period t − 1. I introduce a random error

term, υit−1, which eliminates the deterministic relationship of the capital accumulation pro-

cess. This specification is also used by HHS. To summarize the restrictions on the capital

process and investment, I assume the following:

Assumption 2.4 (Capital Accumulation and Investment)

(a) The unobserved investment demand shocks ζit is independent of ζis conditional on

(kit, ωit).

(b) ζit follows a standard uniform distribution independent of (kit, ωit).

(c) The production shock ηit and ζit are independent conditional on (kit, lit,mit, ωit). In

addition, υit is independent of ηit conditional on (kit, lit,mit, ωit).
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(d) τ → Qi
t(kit, ωit, τ) is strictly increasing on (0, 1).

The next section uses the assumptions on the production function, productivity, flexible

inputs, and investment to show that the model is nonparametrically identified. In addition,

the assumptions also form econometric restrictions on the model, which I use to estimate

firm heterogeneity using nonlinear quantile regressions.

3 Identification

In this section, I show that the conditional densities corresponding to the production func-

tion, productivity, input decisions, and investment are nonparametrically identified using Hu

and Schennach (2008). To show this, I introduce notation. Let Zt = (lt, kt,mt, kt+1) denote

conditioning variables where I have dropped the i subscript for convenience. Assume the

following:

Assumption 3.1 (Conditional Independence):

f(yt|yt+1, It, ωt, Zt) = f(yt|ωt, Zt) and f(yt+1|It, ωt, Zt) = f(yt+1|ωt, Zt).

The first equality of Assumption 3.1 states that conditional on productivity ωt and Zt, future

output yt+1 and current investment It do not provide any additional information about cur-

rent output yt. The second equality states that conditional on ωt and Zt, current investment

It does not provide any additional information about future output yt+1. These are satisfied

by mutual independence assumptions on ηt and ζt conditional on (kt, lt,mt, ωt) and the fact

that ηit is assumed to be conditionally independent over time. The next assumption is more

technical and requires the following preliminary definition:

Definition 3.1 (Integral Operator) Let a and b denote random variables with supports A
and B. Given two corresponding spaces G(A) and G(B) of functions with domains A and B,

let Lb|a denote the operator mapping g ∈ G(A) to Lb|ag ∈ G(B) defined by

[Lb|ag](b) ≡
∫
A
fb|a(b|a)g(a)da,

where fb|a denotes the conditional density of b given a.

With this definition, the uniqueness of an operator mapping can be defined by the next

assumption.
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Assumption 3.2 (Injectivity): The operators Lyt|ωt,Zt and Lyt+1|ωt,Zt are injective.

This allows me to take inverses of the operators. Consider the operator Lyt|ωt,Zt . Following

Hu and Schennach (2008), injectivity of this operator can be interpreted as its correspond-

ing density fyt|ωt,Zt(yt|ωt, Zt) having sufficient variation in ωt given Zt. This assumption is

often phrased as a completeness condition in the nonparametric IV literature on the density

fyt|ωt,Zt(yt|ωt, Zt). More formally, for a given Zt ∈ Supp(Zt),∫
fyt|ωt,Zt(yt|ωt, Zt)g(ωt)dωt = 0, (12)

for all yt implies g(ωt) = 0 for all ωt. For injectivity of the second operator Lyt+1|ωt,Zt , one can

consider yt+1 having sufficient variation for different values of ωt given Zt. Since productivity

is specified as a Markov process and is highly persistent over time, this assumption is intuitive.

This assumption is more restrictive than that of HHS. Since their model is separable in ωt,

they are able to utilize convolution type arguments, which require conditional independence

assumptions and regularity conditions on conditional characteristic functions. I also require

two additional assumptions.

Assumption 3.3 (Uniqueness): For any ω̄t, ω̃t ∈ Ω, the set {fIt|ωt,Zt(It|ω̄t, Zt) 6= fIt|ωt,Zt(It|ω̃t, Zt)}
has positive probability whenever ω̄t 6= ω̃t.

This assumption is relatively weak and is satisfied if there is conditional heteroskedastic-

ity in fIt|ωt,Zt(It|ωt, Zt) or if any functional of its distribution is strictly increasing in ωt.

For example, this assumption is satisfied if E[It|ωt, Zt] is strictly increasing in ωt, which

is similar to the invertibility conditions required in Olley and Pakes (1996). The flexible

accumulation process for capital specified by (11) is necessary for this condition to hold,

otherwise investment would be completely determined by kt+1 and kt. In my empirical ap-

plication, the average investment response to productivity is positive, which supports using

the monotonicity restrictions for identification.

Assumption 3.4 (Normalization): There exists a functional Γ such that Γ[fyt|ωt,Zt(yt|ωt, Zt)] =

ωt.

This functional does not need to be known. It is sufficient to consider a known function of the

data distribution as shown by Arellano and Bonhomme (2016). For a nonseparable model,

this assumption is satisfied if E[yt|ωt, Zt] is strictly increasing in ωt. Then one could normalize
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ωt = E[yt|ωt, Zt]. In my empirical application, I use a nonseparable Translog production

function. In this case, the normalization can be achieved by setting E[yt|ωt, 0] = ωt, which is

standard in the production function with separable productivity. In my model, this requires

restrictions on a subset of parameters. With these assumptions, I can now state the first

part of the identification results.

Theorem 3.1 Under Assumptions 3.1, 3.2, 3.3, and 3.4, given the observed density fyt,It|yt+1,Zt,

the equation

fyt,It|yt+1,Zt(yt, It|yt+1, Zt) =

∫
fyt|ωt,Zt(yt|ωt, Zt)fIt|ωt,Zt(It|ωt, Zt)fωt|yt+1,Zt(ωt|yt+1, Zt)dωt

(13)

admits a unique solution for fyt|ωt,Zt , fIt|ωt,Zt, and fωt|yt+1,Zt .

Proof: See Appendix B.

This result identifies the conditional density of output and investment. It also identifies

the marginal distribution for productivity and the input decision rules as shown in Appendix

B. Additional assumptions are needed to identify the Markov transition function for pro-

ductivity, fωt+1|ωt(ωt+1|ωt). The requirements for identification of this density are different

under two cases involving stationarity and non-stationarity of the density fyt|ωt,Zt(yt|ωt, Zt).

Corollary 3.1 (Stationarity): Suppose that the production function is stationary i.e. fyt|ωt,Zt =

fy1|ω1,Z1 ,∀t ∈ {1, · · · , T}. Then, under Assumptions 3.1, 3.2, 3.3, and 3.4, the observed den-

sity, fyt,It|yt+1,Zt, uniquely determines the density fωt+1|ωt for any t ∈ {1, . . . , T − 1}.

Proof: See Appendix B.

Corollary 3.2 (Non-Stationary): Under Assumptions 3.1, 3.2, 3.3, and 3.4, the observed

density, fyt+1,It+1|yt+2,Zt+1, uniquely determines the density fωt+1|ωt for any t ∈ {1, . . . , T −2}.

Proof: See Appendix B.

The main conclusion of these two corollaries is that under the condition of stationarity,

the productivity process can be identified with T = 2 observations per firms, whereas under

non-stationarity, the productivity process is identified with T = 3 observations per firm.

The number of time periods required for identification increases with the length of the auto-

regressive process. These data requirements are similar to the control function approach,

where the instrument set often includes secondary lags of inputs.
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4 Econometric Procedure

This section presents the model specifications and econometric strategy that are used in the

empirical application. I consider the following functional form for the production function:

Qy
t (kit, lit,mit, ωit, τ) =

Rk∑
rk=0

Rl∑
rl=0

Rm∑
rm=0

Rω∑
rω=0

βrk,rl,rm,rω(τ)krkit l
rl
itm

rm
it ω

rω
it . (14)

The above equation is an approximation of the production function in Equation (2) using

a truncated product of linear sieves with polynomial basis functions. This specification is

similar to the model estimated by Ackerberg and Hahn (2015), although in their model

the only unobservable in the production function is productivity, ωit. In their paper, they

report the marginal effects of Hicks-neutral productivity on production function elasticities.

However, these estimates do not take into account the nature of heterogeneous productivity

responses to input composition and scale of the firm. To show how the specification in

Equation (14) captures these important effects, I decompose the model into a sum of two

series:

Qy
t (kit, lit,mit, ωit, τ) =

Sk∑
sk=0

Sl∑
sl=0

Sm∑
sm=0

γsk,sl,sm,sω(τ)kskit l
sl
itm

sm
it

+

Pk∑
pk=0

Pl∑
pl=0

Pm∑
pm=0

Pω∑
pω=1

σpk,pl,pm,pω(τ)kpkit l
pl
itm

pm
it ω

pω
it .

(15)

A similar specification was considered by Navarro and Rivers (2018), who extends the identi-

fication results of Gandhi et al. (2020) to nonseparable production functions. The differences

between their model and mine is the nonseparability of the ηit term and the input composi-

tion effects of materials on productivity, such as a firm’s capital-materials or labor-materials

ratio. To show how my model can capture these effects, I specify the number of terms in

the series as Sk = Sl = Sm = 2, Pk = Pl = Pm = 2, and Pω = 1, which corresponds to

a Translog production function with first-order interactions of productivity. Accordingly,

there are Jy = 20 parameters in the production function. Equation (15) can be re-written
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as:

Qy
t (kit, lit,mit, ωit, τ) =

Sk=2∑
sk=0

Sl=2∑
sl=0

Sm=2∑
sm=0

γsk,sl,sm,sω(τ)kskit l
sl
itm

sm
it

+ ωit

[
σω(τ) +

(σk(τ) + σl(τ) + σm(τ))sit
3

+
(σkk(τ) + σll(τ) + σmm(τ))s2it

3

+
(σk(τ)− σl(τ))(kit − lit)

3
+

(σkk(τ)− 3/2σkl(τ) + σll(τ))(kit − lit)2

3

+
(σk(τ)− σm(τ))(kit −mit)

3
+

(σkk(τ)− 3/2σkm(τ) + σmm(τ))(kit −mit)
2

3

+
(σl(τ)− σm(τ))(lit −mit)

3
+

(σll(τ)− 3/2σlm(τ) + σmm(τ))(lit −mit)
2

3

]
,

(16)

where sit = kit + lit + mit denotes scale of the firm. The first line of Equation 16 captures

the primary effects of inputs in production. The second to fifth line capture the effects of

productivity driven by a Hicks-neutral effect, scale and the input compositions of capital to

labor, capital to materials, and labor to materials. The coefficient σω(τ) captures a Hicks-

neutral effect for each rank of the unobservable ηit. The identification conditions in the

previous section require that, on average, an increase in productivity leads to a proportionate

increase in output E[σω(ηit)] =
∫ 1

0
σω(τ)dτ = 1, which corresponds to the standard case in

the production function literature. I calculate output elasticities of inputs as individual

quantile marginal effects, which can vary over the conditional distribution of output and the

distribution of input demand. To simplify notation, I let β = (γ, σ). Consider the quantile

marginal effect of capital, which I calculate using

βk(τη, τk) = E

[
∂Qy(Qk(kit; τk), lit,mit, ωit; β(τη))

∂kit

]
, (17)

where τη denotes the rank of the conditional output distribution and τk denotes the rank of

the unconditional capital distribution. This effect is calculated by averaging over ωit, as well

as lit and mit evaluated at the fixed percentiles of capital. To capture the variation of the

input elasticities with respect to changes in productivity, the marginal effect of capital can

be calculated as

σk(τη, τk) = E

[
∂2Qy(Qk(kit; τk), lit,mit, ωit; β(τη))

∂kit∂ωit

]
, (18)
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which would provide an interesting comparison to the estimates from Ackerberg and Hahn

(2015) and the input composition effects in this paper. For example, the marginal effect of

an increase in capital intensity (capital-labor ratio) is derived from Equation (16):

σkl(τη, τkl) =
(σk(τ)− σl(τ))

3
+

2(σkk(τ)− 3/2σkl(τ) + σll(τ))(Qkl(kit − lit; τkl))
3

, (19)

where the capital intensity effect is evaluated at percentiles of τη and the rank of intensity

denoted by τkl. These effects are interpreted as the effect of an increase in capital intensity

on marginal productivity while holding scale of the firm constant.

The Markov process for productivity is specified as a polynomial of degree Jω:

Qω
t (ωit−1, τ) =

Jω∑
j=0

ρj(τ)ωjit−1. (20)

This allows me to capture heterogeneous persistence of productivity, which can depend on

the level of previous productivity and the size of the innovation shock. In Appendix D.3, I

show that Equation (20) must be modified to account for the fact that unobserved selection

alters the productivity distribution rankings. When I augment the productivity model with

R&D activities in Appendix D.1, I consider the following specification, which is similar to

Doraszelski and Jaumandreu (2013)

Qω
t (ωit−1, rit−1, τ) = 1{Rit−1 = 0}Qω

t (ωit−1, τ) + 1{Rit−1 > 0}Qω,r
t (ωit−1, rit−1, τ). (21)

This allows a firm to adopt corner solutions to R&D expenditure represented by the different

functions corresponding to zero or positive R&D. The quantile function Qω,r(ωit−1, rit−1, τ)

can be expressed as a nonlinear function of ωit−1 and rit−1. I specify an initial condition for

productivity as another polynomial of degree Jω1 .

Qω1(ki1, τ) =

Jω1∑
j=0

ρω1,j(τ)kji1. (22)

I approximate the input demand functions using tensor product Hermite polynomials in the

state variables. For example, I specify the labor input demand function as:

Q`
t(kit, ωit, τ) =

J∑̀
j=0

α`,j(τ)φ`,j(kit, ωit), (23)
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where φ`,j is specified as a Hermite polynomial of (kit, ωit). I specify the material input

demand function as:

Qm
t (kit, lit, ωit, τ) =

Jm∑
j=0

αm,j(τ)φm,j(kit, lit, ωit), (24)

where φm,j is another Hermite polynomial. I specify the investment demand equation as:

iit = Qi
t(kit, ωit, τ) =

Jι∑
j=0

δj(τ)φi,j(kit, ωit). (25)

In some applications, censoring of investment is problematic. Due to the quantile specifica-

tion and the equivariance property of quantiles, a censored version of (25) can be adopted.

The censored quantile regression model avoids distributional assumptions in estimation at

the cost of computational complexity.

It is important to note that the functional forms I consider do not guarantee monotonic-

ity in τ , but the estimator discussed in the next section automatically re-arranges quantiles

to enforce monotonicity similar to Chernozhukov et al. (2010). It would be interesting to

consider other shape restrictions in the quantile modelling presented here. The Translog

production function provides a preliminary illustration of the flexibility of the identification

and estimation strategy, which can be modified to include returns to scale restrictions. Other

shape restrictions may be pursued similarly as Blundell et al. (2017), who provide a quan-

tile regression framework for nonseparable demand functions with shape constraints. This

approach would provide more structure on the functional forms in this section and is left for

future research agenda.

5 Implementation

The following conditional moment restrictions hold as an implication of Assumptions 2.1-2.4

(constant omitted in conditioning set). For the production function:

E

[
Ψτ

(
yit −Qy

t (kit, lit,mit, ωit; β(τ))

)∣∣∣∣∣kit, lit,mit, ωit

]
= 0. (26)
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For the labor input demand function:

E

[
Ψτ

(
lit −

J∑̀
j=0

α`,j(τ)φ`,j(kit, ωit)

)∣∣∣∣∣kit, ωit
]

= 0. (27)

For the material input demand function:

E

[
Ψτ

(
mit −

Jm∑
j=0

αm,j(τ)φm,j(kit, lit, ωit)

)∣∣∣∣∣kit, lit, ωit
]

= 0. (28)

For the investment demand function:

E

[
Ψτ

(
iit −

Jι∑
j=0

δj(τ)φι,j(kit, ωit)

)∣∣∣∣∣kit, ωit
]

= 0. (29)

For the productivity process at t ≥ 2:

E

[
Ψτ

(
ωit −

Jω∑
j=0

ρj(τ)ωjit−1

)∣∣∣∣∣ωit−1
]

= 0, (30)

and for initial productivity:

E

[
Ψτ

(
ωi1 −

Jω1∑
j=0

ρω1,j(τ)kji1)

)∣∣∣∣∣ki1
]

= 0, (31)

where Ψτ (u) = τ − 1{u < 0}. Estimating the parameters from the conditional moment

restrictions is infeasible due to the unobserved productivity component. Therefore, I use

the following unconditional moment restrictions and posterior distributions for ωit to inte-

grate out productivity. To fix ideas, consider the following unconditional moment restriction

corresponding to the production function from Equation (26):

E

[∫
Ψτ

(
yit −Qy

t (kit, lit,mit, ωit; β(τ))

)
⊗


kit

lit

mit

ωit

 gi(ω
T
i ; θ(·))dωTi

]
= 0, (32)

where ωTi = (ωi1, . . . , ωiT ) and θ(·) = (β(·), αl(·), αm(·), δ(·), ρ(·), ρω1(·)) denotes a vector of

all the model parameters. The posterior density gi(ω
T
i ; θ(·)) = f(ωTi |yTi , kTi , lTi ,mT

i , i
T
i ; θ(·))
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conditions on the entire set of model parameters. This is due to the equivalence between

the density of a random variable and the inverse of the derivative of its quantile function.

Therefore, it is impossible to estimate the model parameters in a τ -by-τ procedure. To elim-

inate the intractability of this problem, the continuous model parameters are approximated

by spline functions following Arellano and Bonhomme (2016) and Wei and Carroll (2009).

For example, the function β(τ) is approximated by a piecewise-linear interpolating spline on

a grid [τ1, τ2], [τ3, τ4], . . . , [τQ−1, τQ], contained in the unit interval and constant on (0, τ1] and

(τQ, 1). Therefore, I write for all q = 1, . . . , Q− 1:

β(τ) = β(τq) +
τ − τq
τq+1 − τq

(
β(τq+1)− β(τq)

)
, τq < τ ≤ τq+1.

The intercept coefficient, β0(τ), is specified as the quantile of an exponential distribution on

(0, τ1] (indexed by λ−β ) and (τQ−1, 1) (indexed by λ+β ) given by:

β0(τ) = β0(τ1) +
ln(τ/τ1)

λ−β
, τ ≤ τ1,

and

β0(τ) = β0(τQ) +
ln(1− τ/1− τQ)

λ+β
, τ > τQ.

The remaining functional parameters are modeled similarly. The usefulness of the piece-wise

linear spline is that the posterior density has a closed form expression and does not rely on

strong distributional assumptions. For example, the density corresponding to the production

function can be written as:

fyt|kt,lt,mt,ωt(yt|kt, lt,mt, ωt;β) =

Q−1∑
q=1

τq+1 − τq
Qyt (·;β(τq+1))−Qyt (·;β(τq))

1{Qyt (·;β(τq)) < yt ≤ Qyt (·;β(τq+1))}

+ τ1λ
−
β exp

(
λ−β (yt −Qyt (·;β(τ1)))

)
1{yt ≤ Qyt (·;β(τ1))}

+ (1− τQ)λ+β exp
(
− λ+β (yt −Qyt (·;β(τQ)))

)
1{yt > Qyt (·;β(τQ))}.

The exponential parameters are updated using a likelihood approach:

λ−β =
−E[

∫
1{yt ≤ Qy

t (·; β(τ1))}gi(ωTi ; θ(·))dωt]
E[
∫

(yt −Qy
t (·; β(τ1)))1{yt ≤ Qy

t (·; β(τ1))}gi(ωTi ; θ(·))dωt]
,

and

λ+β =
E[
∫
1{yt > Qy

t (·; β(τQ))}gi(ωTi ; θ(·))dωt]
E[
∫

(yt −Qy
t (·; β(τQ)))1{yt > Qy

t (·; β(τQ))}gi(ωTi ; θ(·))dωt]
.
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To estimate the model, the integral inside the expectation of Equation (32) needs to be

approximated. This can be done using quadrature methods or Monte Carlo integration and

converting the problem into a weighted quantile regression. Due to the high-dimensionality

of my application, I choose to use a random-walk Metropolis Hastings algorithm to compute

the integral. This becomes a Monte Carlo Expectation Maximization (MCEM) procedure,

where the maximization step is performed using quantile regression. The algorithm proceeds

as follows. Given an initial parameter value θ̂0, iterate on s = 0, 1, 2, . . . , in the following

two-step procedure until convergence to a stationary distribution:

1. Stochastic E-Step: Draw M values ω
(m)
i = (ω

(m)
i1 , ω

(m)
i2 , . . . , ω

(m)
iT ) from

gi(ω
T
i ; θ̂(s)) = f(ωTi |yTi , kTi , lTi ,mT

i , i
T
i ; θ̂(s)) ∝

T∏
t=1

f(yit|kit, lit,mit, ωit; β̂
(s))f(lit|kit, ωit; α̂l(s))f(mit|kit, lit, ωit; α̂(s)

m )

× f(iit|kit, ωit; δ̂(s))
T∏
t=2

f(ωit|ωit−1; ρ̂(s))f(ωi1|ki1; ρ̂(s)ω1
).

2. Maximization Step: For q = 1, . . . , Q, solve

β̂(τq)
(s+1) = argmin

β(τq)

N∑
i=1

T∑
t=1

M∑
m=1

ψτq

(
yit −Qy

t (kit, lit,mit, ω
(m)
it ; β(τq))

)
,

α̂l(τq)
(s+1) = argmin

α`(τq)

N∑
i=1

T∑
t=1

M∑
m=1

ψτq

(
lit −

J∑̀
j=0

α`,j(τq)φl,j(kit, ω
(m)
it )

)
,

α̂m(τq)
(s+1) = argmin

αm(τq)

N∑
i=1

T∑
t=1

M∑
m=1

ψτq

(
mit −

Jm∑
j=0

αm,j(τq)φm,j(kit, lit, ω
(m)
it )

)
,

δ̂(τq)
(s+1) = argmin

δ(τq)

N∑
i=1

T∑
t=1

M∑
m=1

ψτq

(
iit −

Jι∑
j=0

δj(τq)φι,j(kit, ω
(m)
it )

)
,

ρ̂(τq)
(s+1) = argmin

ρ(τq)

N∑
i=1

T∑
t=2

M∑
m=1

ψτq

(
ω
(m)
it −

Jω∑
j=0

ρj(τq)ω
(m)j
it−1

)
,

ρ̂ω1(τq)
(s+1) = argmin

ρω1 (τq)

N∑
i=1

M∑
m=1

ψτq

(
ω
(m)
i1 −

Jω1∑
j=0

ρω1,j(τq)k
j
i1

)
,

where ψτ (u) = (τ − 1{u < 0})u is the “check” function from quantile regression. The expo-

nential parameters for the intercept coefficients (e.g. the production function) are updated
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from:

λ̂
−(s)
β =

−
∑N

n=1

∑T
t=1

∑M
m=1 1{yt ≤ Qy

t (·, ω
(m)
it ; β̂(τ1)

(s))}∑N
n=1

∑T
t=1

∑M
m=1(yt −Q

y
t (·, ω

(m)
it ; β̂(τ1)(s))1{yt ≤ Qy

t (·, ω
(m)
it ; β̂(τ1)(s))}

,

and

λ̂
+(s)
β =

∑N
n=1

∑T
t=1

∑M
m=1 1{yt > Qy

t (·, ω
(m)
it ; β̂(τQ)(s))}∑N

n=1

∑T
t=1

∑M
m=1(yt −Q

y
t (·, ω

(m)
it ; β̂(τQ)(s))1{yt > Qy

t (·, ω
(m)
it ; β̂(τQ)(s))}

.

In this setting, it is computationally efficient to take M = 1 in the MCEM algorithm

and report estimates of the average S̃ = S/2 draws. This is known as the stochastic EM

algorithm (stEM) of Celeux and Diebolt (1985). The sequence of maximizers θ̂(s) is a time-

homogeneous Markov chain, which if ergodic, will converge to its stationary distribution.

Nielsen (2000) provides sufficient conditions for ergodicity and provides asymptotic proper-

ties of the estimator when the “M-step” is solved using maximum likelihood. Arellano and

Bonhomme (2016) discusses the asymptotic properties of the estimator when the M-step

is solved using quantile regression in a panel dating setting, where for example ωit = ωi

would be modelled as a firm fixed-effect. They show that under correct specification of the

parametric model, the estimator is root-N consistent and asymptotically normal. That is,

assuming Q (the grid of the interpolating spline) and J = Jy + Jω + Jω1 + J` + Jm + Jι are

fixed. Ideally, one would have these parameters grow with the sample size so that approx-

imation error of the corresponding models approaches zero. Deriving the optimal rate of

convergence in a nonparametric setting is an avenue for future work. Arellano et al. (2017)

quantify the uncertainty of their estimates using parametric and nonparametric bootstrap

clustered at the individual level. Both algorithms are computationally demanding, as it re-

quires re-estimating the model many times. One alternative is to calculate confidence bands

from the chain of parameters from the converged EM algorithm, which is common in the

MCMC literature. These confidence bands are then interpreted as posterior intervals and

are reported in Appendix C.

6 Application

The estimator is applied to data on U.S. manufacturing firms from the Standard and Poors

Compustat database. The sample covers publicly traded firms and contains data from their

financial statements. I collect a sample between 1997 and 2016 on sales, capital expendi-

23



tures, property, plant, and equipment, employees, and other expenses to construct output,

investment, capital stock, labor, and material inputs. The financial data is deflated using

3-digit deflators from the NBER-CES Manufacturing Industry Database. After data clean-

ing, there are a total of N = 2961 firms with an average of 1545 firms per year. Summary

statistics are provided in Appendix A.

The estimation algorithm is ran with 500 random-walk Metropolis-Hastings steps and 300

EM steps, taking M = 1. In the sampling algorithm, productivity is drawn from a normal

distribution centered at the current draw of productivity with variance equal to 0.01. This

achieves an average acceptance rate of 10%. The production function is specified as before

and I take Jω = Jω1 = 3 for the productivity processes, Jl = Jι = 16 for labor and investment

demand, and Jm = 27 for materials demand. Therefore, the total number of parameters are

J = 85. The final estimates are used to simulate productivity from its initial conditions and

the decision rules for investment, labor, and materials. A capital accumulation process is

needed to simulate these values. The process specified in Equation (11) is flexible and is used

to accumulate capital following the perpetual inventory method with a constant depreciation

rate set at 0.02.

6.1 Empirical Results

6.1.1 Production Function Estimates

Estimates of the heterogeneous production function elasticities are shown in Figures 1 and

2. Panel (a) of Figure 1 reports the estimates of the average capital elasticity evaluated at

percentiles of capital and output. The estimates range from 0.3 for firms at the lowest per-

centile of output and highest percentile of capital to 0.413 for firms at the highest percentile

of output and capital. For firms with high levels of capital, there is more heterogeneity

across the output distribution, contrasted to the low heterogeneity for firms at the lower

percentiles of capital. Panel (b) reports the average labor elasticity evaluated at percentiles

of labor and output. The relationship is opposite to that of capital. The estimates are

−0.005 for firms at the highest percentile of output and lowest percentile of labor, and 0.179

for firms in the highest percentile of output and labor. For these estimates, there is larger

heterogeneity across firms with low levels of labor than firms who use more labor. Panel (c)

shows the estimates of the average materials elasticity evaluated at percentiles of materials

and output. The relationship is similar to labor. The estimates are lowest at 0.467 for firms

at the highest percentile of output and lowest percentile of materials, and highest at 0.634
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for firms who use high levels of materials at the bottom of the output distribution. Overall,

these results suggest that elasticities vary over the size of the firm measured by the rank on

the conditional output distribution and the amount of inputs a firm uses.

Figure 1: Output Elasticities

∗Panel (a): Capital elasticity evaluated at τη and percentiles of capital τk averaged over values of ωit and
(lit,mit) that correspond to τk. Panel (b): Labor elasticity evaluated at τη and percentiles of labor τl
averaged over values of ωit and (kit,mit). Panel (c): Materials elasticity evaluated at τη and percentiles of
materials τm averaged over values of ωit and (kit, lit).

In Figure 2, I report similar estimates as Figure 1, instead evaluating the estimates at

fixed percentiles of productivity. Panel (a) reports the capital elasticities over percentiles of

output and productivity. These results are more heterogeneous for firms with different levels

of productivity. For low output and productivity firms, the capital elasticity is 0.233. For

high output and productivity firms, this is 0.44. For low to medium productivity firms, these

estimates are increasing faster in the rank of the output distribution, but for high productiv-

ity firms this relationship is U-shaped. For low output firms, capital elasticity increases faster

when the firm is more productive. For high output firms, the rate at which the estimates

increase is slower. These results imply that unobserved productivity is an important dimen-

sion of firm heterogeneity in capital elasticities. Panel (b) reports the estimates of labor

elasticity. For low output and productivity firms, the estimate is 0.046 and for low output

and high productivity firms, the estimate is 0.132. Unlike panel (b) in Figure 1, estimates

are increasing in output size for low productivity firms and decreasing for firms at the highest

percentile of productivity. Labor elasticity estimates are increasing in productivity except

for high output firms, where the estimates are constant. Estimates rise faster for low output

firms than high output firms. Panel (c) reports the material elasticities over percentiles of
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productivity. For low output and productivity firms, estimates are highest at 0.747, and for

high output and productivity firms, estimates are lowest at 0.424. For high productivity

firms, material elasticities are constant in output size, but decreasing for low productivity

firms. Overall, these estimates are increasing in productivity size for fixed levels of output,

although estimates increase faster for low output firms compared to higher output firms.

Figure 2: Output Elasticities (Over Productivity)

∗Panel (a): Capital elasticity evaluated at τη and τ -productivity averaged over values of (kit, lit,mit) that
correspond to τ -productivity. Panel (b): Labor elasticity evaluated at evaluated at τη and τ -productivity av-
eraged over values of (kit, lit,mit) that correspond to τ -productivity. Panel (c): Materials elasticity evaluated
at τη and τ -productivity averaged over values of (kit, lit,mit) that correspond to τ -productivity.

Figure 3 presents estimates of the non-Hicks neutral effects of productivity on capital,

labor, and material inputs. These effects can be interpreted as the marginal productivity

of inputs that follows from a small change in productivity. The labor-augmenting aspect

of the shock is of particular importance, since the empirical literature often points to labor

productivity as sources of long-run economic growth. Despite its importance, there are rela-

tively few papers that study these sources of productivity at the firm-level. This is because

identification and estimation of these models are difficult due to the issues of endogeneity

and multi-dimensional productivity.3 It is worth noting that the identification arguments

presented here may accommodate multi-dimensional unobservables, such as Hicks-neutral

and labor-augmenting productivity. Extra unobservables require additional proxies, which

increases the data requirements in my approach, however the estimates under this alternative

would be more suited for comparison to existing empirical work.

3As mentioned earlier, Doraszelski and Jaumandreu (2018) have made progress in this regard using rich
firm-level data. Dermirer (2020) also studies nonparametric identification of these models and applies his
estimates to U.S. public manufacturing firms.
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Figure 3: Effect of Productivity on Output Elasticities

∗Panel (a): Capital efficiency evaluated at τη and percentiles of capital τk averaged over values of (lit,mit)
that correspond to τk. Panel (b): Labor efficiency evaluated at τη and percentiles of labor τl averaged over
values of (kit,mit). Panel (c): Materials efficiency evaluated at τη and percentiles of materials τm averaged
over values of (kit, lit).

Panel (a) in Figure 3 shows the results for the capital-augmenting effect of productivity.

These estimates are computed at various percentiles of output and capital to examine how

the capital efficiency effect varies over firms. The estimates range from 0.086 for firms at the

highest percentiles of output and lowest percentile of capital, to 0.224 for firms at the highest

percentiles of output and capital. Overall, the capital efficiency effects are increasing for firms

who use more capital, but almost constant across the conditional output distribution. For

the labor efficiency estimates in the panel (b), there is more heterogeneity between firms of

different sizes who use varying amounts of labor. The estimates range from −0.044 for firms

at the highest percentile of output and labor, to 0.119 for firms at the lower percentiles of

output, but the highest percentile of labor. Interestingly, the labor estimates are decreasing

in labor size for the smallest percentile of output but increasing at the largest percentile.

These results seem consistent with empirical results that find large amounts of firm variation

in labor-productivity, and suggests that smaller firms use labor more efficiently than larger

firms in this sample. Panel (c) reports the material efficiency estimates. These range from

−0.403 for firms at the lowest percentiles of output and materials, to −0.204 for firms at

the highest percentiles of output and materials. These estimates reveal that for firms in this

sample, an increase in productivity leads to a decrease in the marginal product of materials.

This could suggest that either firms are inefficient in their usage of materials or that there

are structural differences in materials productivity that are not captured by these marginal

effects.
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Figure 4: Effects of Input Composition on Productivity

∗Panel (a): Capital-labor effect evaluated at τη and percentiles of capital-labor τ -(k-l). Panel (b): Capital-
materials effect evaluated at τη and percentiles of capital-materials τ -(k-m). Panel (c): Labor-materials
effect evaluated at τη and percentiles of labor-materials τ -(l-m).

Figure 5: Effect of Scale on Productivity

∗ Scale effect evaluated at τη and percentiles of scale (τ -scale).

Using Equation (16), I examine the role of input composition and scale of a firm on

productivity. Similar to Navarro and Rivers (2018), I interpret these estimates as the effect

of an increase in technological change through composition and scale on productivity. In

Figure 4 panel (a), I find that small firms (as measured by low τ -output) and labor intensive

firms (low τ -(k-l)) are less efficient at transforming increases in technological change into

productivity compared to larger, more capital intensive firms. In fact, the estimates for these

smaller, labor intensive firms are negative, which may suggest that the firms are inefficient

28



in the use of capital relative to labor, or that technological change is labor-using as opposed

to labor-saving. In panels (b) and (c), I find that large firms with high compositions of

capital to materials and labor to materials are better at translating technological change

into productivity gains. Finally, in Figure 5, I find that regardless of firm size, higher scale

firms are more productive. This could be the case if high scale firms increase scale through

higher capital usage. Since larger firms tend to be more capital intensive, the scale effect is

positive and increasing.

6.1.2 Persistence of Productivity

Next, I examine the estimates of the nonseparable productivity process. Figure 6 reports

the estimates of productivity persistence at various percentiles of the innovation shock and

percentiles of last period productivity. Persistence exhibits a significant asymmetric rela-

tionship. These results suggest that high productivity firms (τ -productivity= 0.9) hit by

negative shocks have a lower persistence of productivity history (0.875) than low productiv-

ity firms (τ -productivity= 0.1) hit by the same negative shock (0.925). This indicates that

for high productivity firms, large unanticipated negative shocks can reduce the history of

high productivity by more than firms with a history of low productivity. This relationship

changes when firms are hit by large positive shocks. High productivity firms have higher

persistency of productivity history (0.968) than low productivity firms (0.870) when hit by

positive shocks.

Figure 6: Productivity Persistence

∗Estimates of average productivity persistence evaluated at τξ and percentiles of previous productivity.
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Figure 7: Higher Moments of the Conditional Productivity Distribution

∗ Panel (a): Conditional dispersion (second moment) evaluated at different percentiles of previous pro-
ductivity. Panel (b): Conditional skewness (third moment) evaluated at different percentiles of previous
productivity. Panel (c): Conditional kurtosis (fourth moment) evaluated at different percentiles of previous
productivity

Using the estimates of the productivity process, I construct estimates of the higher-

moments of the conditional productivity distribution in Figure 7. For a measure of un-

certainty, I use a conditional quantile-based estimate of µ2,t(ωit−1, τ) = Qω
t (ωit−1, τ) −

Qω
t (ωit−1, 1 − τ) for some τ ∈ (1/2, 1). I evaluate uncertainty at different levels of ωit−1

fixed at τ = 10/11 and find that productivity uncertainty is lowest for firms with a modest

history of productivity. Uncertainty for low productivity firms is high, however higher pro-

ductivity histories are associated with higher uncertainty. This evidence is complementary to

that of Bloom et al. (2018) and shows that uncertainty varies firm-to-firm in addition to over

time. In panel (b), I report conditional quantile-based estimates of productivity skewness

given by the following equation:

µ3,t(ωit−1, τ) =
Qω
t (ωit−1, τ) +Qω

t (ωit−1, 1− τ)− 2Qω
t (ωit−1, 1/2)

µ2(ωit−1, τ)
, τ ∈ (1/2, 1). (33)

The estimate of conditional skewness captures whether the dispersion in productivity is

driven by the left or right tail of the productivity distribution for different productivity

histories. I find that skewness is positive for firms with low histories of productivity and

negative for high histories. This suggests that firms with low histories have a higher proba-

bility of drawing values of current productivity to the right of the distribution after a positive
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productivity shock. Firms with high histories have a higher probability of drawing values

to the left of the distribution, following a negative productivity shock. Overall, this result

strengthens the argument that business cycles can generate asymmetries in the productivity

distribution conditional on a firm’s productivity history. In panel (c), I measure conditional

kurtosis using

µ4,t(ωit−1, τ, γ) =
Qω
t (ωit−1, γ)−Qω

t (ωit−1, 1− γ)

µ2(ωit−1, τ)
, τ < γ, (34)

with τ = 9/11 and γ = 10/11. I find that kurtosis increases with productivity history. The

results presented in this section illustrate the importance of firm-specific uncertainty and

asymmetries in the productivity process. In the next section, these results will be used to

show how firm responses to labor, investment, and input misallocation vary with productivity

history.

6.1.3 Input Demand and Productivity

In this section, I examine how firms adjust inputs with respect to changes in productivity

and innovation shocks. The input responses to productivity are calculated as the derivative

of Equations (23), (24), and (25) with respect to productivity. These provide insights on

how firms input demand changes in response to technological or organizational innovations

measured by the unobserved productivity component. For example, whether a firm adjusts

its labor demand in response to innovations in automation, has important consequences for

employment displacement and its public policy responses. My estimates show that there

is heterogeneity at the firm-level in these productivity responses at different percentiles of

productivity and input demand.

Panel (a) in Figure 8 shows the relationship between investment demand and productivity.

Firms at the lowest percentile of investment and productivity have the largest productivity

response at 0.247. As productivity increases for lower investment firms, this effect decreases

to −0.033. For high investment firms at the lowest percentile of productivity, the effect

is 0.039. For similar levels of investment, high productivity firms have an effect equal to

0.164. Overall, these results suggest there is significant heterogeneity in firms’ investment

adjustments with respect to changes in productivity levels.

Panel (b) shows the relationship between labor demand and productivity. Firms at the

lowest percentile of labor and productivity have an effect equal to −0.114. For firms at

the lowest percentile of labor and highest percentiles of productivity, the effect is equal to
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0.06. For firms at the highest percentile of labor, but the lowest percentile of productivity,

the effect approaches 0.288, but for firms at highest percentile of productivity this effect

decreases to 0.236. The shape of the labor productivity response is an inverse U-shape for

low labor firms. For firms who use more labor, the estimates are somewhat flatter across the

productivity distribution. These results show that for firms who use less labor and are less

productive, increases in productivity leads to an increase in the amount of labor, whereas

large labor firms do not adjust labor as much in response to productivity changes at different

levels of productivity.

Panel (c) shows the relationship between material input demand and productivity. Firms

at the lowest percentile of materials and productivity have a productivity effect equal to

0.185. For firms at the lowest percentile of materials and highest percentiles of productivity,

this effect is equal to 0.303. For firms at the highest percentile of materials, but the lowest

percentile of productivity, the effect is equal to 0.235, and for the highest percentile of

productivity is 0.226. For firms who use the smallest amounts of materials and who are not

productive, the productivity effect is smallest. The effect is largest for higher productivity

firms. Overall, firms respond to productivity increases by using more material inputs.

Figure 8: Input Demand Responses to Productivity

∗Panel (a): Investment demand evaluated at τζ and percentiles of productivity τω averaged over values of
kit. Panel (b): Labor demand evaluated at τεl and percentiles of productivity τω averaged over values of kit.
Panel (c): Material demand evaluated at τεm and percentiles of productivity τω averaged over values of kit
and lit.
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6.1.4 Impulse Responses to Productivity Shocks

This section simulates the impact of innovation shocks to the productivity process and input

demand functions using estimates from the model. Similar to HHS, I estimate how quickly

firms respond to shocks to current productivity. This analysis will show whether input

decision rules for capital, labor, and materials are subject to substantial adjustment frictions.

For example, if the finding is that labor responds positively to increases in productivity, then

policies designed to increase productivity may have a faster effect depending on how quickly

the firm is able to adjust its work force, which has implications for labor market outcomes.

My model allows me to examine this effect on two different dimensions: the size of the labor

demand across firms and the size of the productivity shock. This estimator can be given by:

l̂(τξ, τεl) = Ê

[
∂Q`

t

(
kit, Q

ω
t (ωit−1, τξ), τεl

)
∂ωit

×

(
∂Qω

t (ωit−1, τξ)

∂ξit

)]
,

where ∂Qω
t (ωit−1, τξ)/∂ξit can be approximated by finite differences. In practice, I simu-

late impulse response functions under various innovation shocks to productivity and input

demand functions under some initial conditions.

Figures 9, 10, 11 and 12 report median differences in low innovation shocks τξ = 0.1 and

high innovation shocks τξ = 0.9 and firms hit by medium innovation shocks at τξ = 0.5 for

productivity, capital, labor and materials. I simulate the model so that the impact of the

shock occurs at t = 2. I examine the initial responses to productivity and inputs, as well

as the length of time it takes for firms to recover from negative productivity shocks. This

analysis is somewhat similar to HHS. In their paper, they study how quickly firms adjust

inputs in response to the latest shocks in productivity. Their GMM estimator allows them

to estimate the covariance between inputs, productivity, and its shocks. This is useful in

their context, as it provides guidance for choosing proxies for the latent productivity. These

estimates can also identify industry efficiency and frictions in the input markets. Unlike their

GMM estimator, my estimates document the impact of differently sized innovation shocks

and input demand functions beyond the mean, as well as the full history of the impact.

This analysis is also similar to Arellano et al. (2017), who study the impact of earnings

shocks on the process for income and consumption. My application further illustrates the

importance of an asymmetric productivity process and its consequences for the projection

of future productivity growth, input demand, and misallocation.
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Figure 9: Impulse Response of an Innovation Shock to Productivity

∗Top row: Differences in productivity between firms hit with low productivity shock τξ = 0.1 and medium
shock τξ = 0.5 at different levels of initial productivity. Bottom row: Differences in productivity between
firms hit with high productivity shock τξ = 0.9 and medium shock τξ = 0.5 at different levels of initial
productivity.

The productivity responses to innovation shocks are reported in Figure 9, which shows

the impact of a large negative shock (τξ = 0.1) in panel (a-c) and large positive shock

(τξ = 0.9) in panel (d-f) for various levels of initial productivity τω1 = (0.1, 0.5, 0.9). For

firms with the lowest initial productivity (red), a large negative innovation shock decreases

productivity by 12.5%, while a large positive shock increases productivity by 14.5%. For

firms with median initial productivity (green), a large negative innovation shock decreases

productivity by 13.2%, and a large positive shock increases productivity by about 13.5%

For firms with the highest initial productivity (blue), a large negative innovation shock

decreases productivity by 15.2%, and a large positive shock increases productivity by about

14%. There is no observable difference in the length of time required to recover from negative

productivity shocks, which is consistent with the small difference in productivity persistence

for high and low productivity firms hit by negative innovation shocks. Another conclusion is

that firms with low productivity history have an asymmetric gain in productivity following

a positive shocks compared to firms with high productivity history who have an asymmetric

loss.
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Figure 10: Impulse Response of an Innovation Shock to Investment

∗Top row: Differences in investment between firms hit with low productivity shock τξ = 0.1 and medium
shock τξ = 0.5 at different levels of investment demand. Bottom row: Differences in investment between
firms hit with high productivity shock τξ = 0.9 and medium shock τξ = 0.5 at different levels of investment
demand. Low, medium, and high initial productivity paths are denoted by the red, green, and blue lines
respectively.

The investment responses to innovation shocks are reported in Figure 10, which shows

the impact of negative productivity shocks in panel (a-c) and positive productivity shocks in

panel (d-f) for various levels of investment demand τi = (0.1, 0.5, 0.9) and initial productivity.

The red, green, and blue lines correspond to firms with initial productivity levels τω1 =

(0.1, 0.5, 0.9). For firms with the lowest investment demand and initial productivity, a large

negative productivity shock initially decreases investment by 2.5% and decreases until year

eight to 5.8%. For high investment and initial productivity, the initial drop is much lower

at 0.7% and the largest drop occurs earlier at year 5 at 3%. Overall, low investment firms

adjust capital investment more dramatically in response to a negative productivity shock

and the largest decreases occur for low productivity firms. High investment firms responses

are smoother and less dramatic, and unlike low investment firms, firms with higher initial

productivity face a larger decrease in investment. Overall, this could suggest the presence

of high adjustment costs that penalize large investment changes at τi = 0.9 relative to small

changes at τi = 0.1.
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Figure 11: Impulse Response of an Innovation Shock to Labor

∗Top row: Differences in labor between firms hit with low productivity shock τξ = 0.1 and medium shock
τξ = 0.5 at different levels of labor demand. Bottom row: Differences in labor between firms hit with high
productivity shock τξ = 0.9 and medium shock τξ = 0.5 at different levels of labor demand. Low, medium,
and high initial productivity paths are denoted by the red, green, and blue lines respectively.

The labor responses to innovation shocks are reported in Figure 11, which shows the

impact of a negative productivity shock in panel (a-c) and a positive productivity shock in

panel (d-f) for various levels of labor demand τ` = (0.1, 0.5, 0.9) and initial productivity. For

low labor firms in panel (a) and (d) there is an overshoot and undershoot of labor demand

in the medium term following a negative and positive productivity shock. These findings are

similar to that of Bloom (2009) who finds that medium term hiring occurs after an increase

in the volatility of business conditions. Therefore, one possible explanation for these results

is an increase in productivity volatility following a negative shock that causes some firms

near the hiring threshold to hire in response to a positive shock and other firms to do

nothing in response to a negative shock. The opposite situation may arise in panel (d) if the

positive shock leads to a decrease in productivity volatility. This overshooting/undershooting

phenomenon does not occur for firms at the higher end of the labor demand distribution.
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Figure 12: Impulse Response of an Innovation Shock to Materials

∗Top row: Differences in materials between firms hit with low productivity shock τξ = 0.1 and medium shock
τξ = 0.5 at different levels of materials demand. Bottom row: Differences in materials between firms hit
with high productivity shock τξ = 0.9 and medium shock τξ = 0.5 at different levels of materials demand.
Low, medium, and high initial productivity paths are denoted by the red, green, and blue lines respectively.

The materials responses to innovation shocks are reported in Figure 12, which shows the

impact of a negative productivity shock in panel (a-c) and a positive productivity shock

in panel (d-f) for various levels of materials demand τm = (0.1, 0.5, 0.9) for different levels

of initial productivity. For firms with the lowest materials demand and highest initial pro-

ductivity, a large negative productivity shock decreases material inputs by 5.7%, while a

large positive shock increases material inputs by 5.5%. For firms with the highest materials

demand, there is not much heterogeneity between different levels of initial productivity. Ma-

terial demand falls around 4.5% in response to a negative shock and rises 3.9% in response

to a positive shock.
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Figure 13: Impulse Response of an Innovation Shock to Input Misallocation

∗Top row: Differences in marginal product dispersion between firms hit with low productivity shock τξ = 0.1
and medium shock τξ = 0.5 at different levels of initial productivity. Bottom row: Differences in marginal
product dispersion between firms hit with high productivity shock τξ = 0.9 and medium shock τξ = 0.5 at
different levels of initial productivity. Low, medium, and high initial productivity paths are denoted by the
red, green, and blue lines respectively.

In Figure 13, I examine the response of input misallocation to productivity shocks. Mis-

allocation is measured as the cross-sectional standard deviation in marginal products of

inputs. Several papers have sought to identify the sources of misallocation. David and

Venkateswaran (2019) develop a unifying framework to distinguish sources of capital mis-

allocation, such as uncertainty, adjustment costs, and financial frictions. Uncertainty plays

a role in labor misallocation as well. Bloom et al. (2018) shows that an uncertainty shock

leads to a 15% increase in the dispersion of the marginal product of labor. Misallocation of

intermediate inputs, such as materials, has not received much attention, although Boehm

and Oberfield (2020) finds that mechanisms such as inefficient contract enforcement play a

key role in input choices and misallocation in India. There does not seem to be any existing

evidence suggesting uncertainty causes misallocation in intermediate inputs. In the left col-

umn of Figure 13, I plot the path of capital misallocation following a negative and positive

productivity shock. One interesting phenomenon is that misallocation falls for medium and

high productivity firms following a negative shock, but rises for low productivity firms. A

rise in misallocation follows a large positive productivity shock for all levels of productivity.

In the middle column, there is an increase in labor misallocation following a negative shock
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and a decrease following a positive shock. The right column plots material misallocation and

shows that a negative shock leads to a decrease in misallocation and a positive shock leads

to an increase in misallocation for all levels of productivity.

7 Conclusion

This paper proposes a nonseparable model for firm production, which allows for elastici-

ties and non-Hicks neutral effects of productivity to vary over the conditional distribution

of output. The estimates reveal substantial heterogeneity across this distribution, as well

as across different percentiles of input demand. This challenges the standard approach of

estimating production functions, which specify technology that is fixed across firms, and

instead suggests that nonseparable, firm-specific models are more suitable when heterogene-

ity is prevalent in the data. The approach considered here also allows for a more flexible

productivity process, where persistence in productivity history can vary with respect to the

latest innovation shocks, and that good or bad shocks have asymmetric impacts for both

high and low productivity firms.

The production function, input demand functions, and productivity are nonparametri-

cally identified in the presence of nonseparable unobservables. I show that under additional

independence restrictions, conditional quantile restrictions can be imposed, and the quantile

estimators can be used to capture firm-level heterogeneity. The estimator proposed in this

paper is computationally tractable and involves quantile regression in each iteration of the

simulation algorithm. This provides new results that have not been considered in the prior

production function literature. For example, this paper shows that firms have asymmetric

input adjustments in response to productivity changes. This type of analysis is useful from a

policy perspective, as proposals aimed to increase productivity may have different outcomes

for firms with different input demand functions and productivity levels. This paper also

studies the adjustment frictions of input demand functions in response to innovation shocks

to productivity and finds asymmetries in the impacts of good and bad shocks. The overall

finding is that firms with the highest input-productivity adjustments also have the largest

drop in input demand following a bad productivity shock. For example, I found that low

investment firms with low productivity have the largest decrease in investment following a

negative productivity shock and adjust investment more rapidly than high investment firms.

There are many interesting extensions that can be considered in the framework proposed

in this paper. The first would be to include additional unobservables beyond the productivity
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term. For example, fixed effects can be included in the production function and productivity

process to account for firm-specific unobservables. The current model assumes productivity

is scalar and that its interactions with inputs measure the magnitude of non-Hicks neutral

effects. It would be interesting to consider multi-dimensional productivity shocks, for ex-

ample a Hicks-neutral and a labor-augmenting term to capture productivity effects that are

biased towards labor. Extending the identification arguments to this case would be more

demanding since labor-augmenting productivity is typically serially correlated. Lastly, the

results presented here are often used to estimate other aspects of firm technology and market

power. Further analysis of total factor productivity and markup estimates would provide an

interesting comparison with results from the standard production function model.
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Appendix

A Data Appendix

Table 1: Summary Statistics (in logs) for U.S. Manufacturing Firms

1st Qu. Median 3rd Qu. Mean sd

Output 4.24 5.79 7.27 5.79 2.14

Capital 3.12 4.84 6.45 4.81 2.35

Labor -1.23 0.22 1.62 0.21 1.95

Materials 3.95 5.47 6.95 5.46 2.15

Investment 0.57 2.40 3.94 2.23 2.49

Variable Construction:

• Output: Deflated Net Sales from Compustat (SALE).

• Capital: Deflated Property Plant and Equipment Net of Depreciation (PPENT).

• Labor: Number of Workers (EMPLOY).

• Labor Expense: EMPLOY times average industry wage calculated from the ratio of

PAY and EMP in the NBER-CES Manufacturing Industry Database.

• Materials: Deflated Sales (SALE)-Operating Income Before Depreciation (OIBDP)-

labor expense.

• R&D: XRD in Compustat.

B Identification

In this section, I show how the results of Hu and Schennach (2008) can be applied to identify

the production function, input demand functions, and the marginal distribution of produc-

tivity. Technical details for the proof of their decomposition technique can be found in their

paper.
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Proof of Theorem 3.1 :

First, a conditional density constructed from observed data can be written as a product of

the unknown conditional densities of interest:

fyt,It|yt+1,Zt =

∫
fyt,It,ωt|yt+1,Zt(yt, It, ωt|yt+1, Zt)dωt

=

∫
fyt|yt+1,It,ωt,Zt(yt|yt+1, It, ωt, Zt)fIt|yt+1,ωt,Zt(It|yt+1, ωt, Zt)f(ωt|yt+1, Zt)dωt

=

∫
fyt|ωt,Zt(yt|ωt, Zt)fIt|ωt,Zt(It|ωt, Zt)f(ωt|yt+1, Zt)dωt,

(35)

where the third line follows from applying the conditional independence in Assumption

3.1. The goal of the identification strategy is to show that the conditional densities in

Equation (35) can be written into its corresponding integral operators, which can be shown

to admit a unique decomposition. Using Definition 3.1 and omitting the conditioning on Zt

for notational convenience:

[Lyt,It|yt+1g](yt) =

∫
fyt,It|yt+1(yt, It|yt+1)g(yt+1)dyt+1

=

∫ ∫
fyt,It,ωt|yt+1(yt, It, ωt|yt+1)dωtg(yt+1)dyt+1

=

∫ ∫
fyt|It,yt+1,ωt(yt|It, yt+1, ωt)fIt|yt+1,ωt(It|yt+1, ωt)fωt|yt+1(ωt|yt+1)g(yt+1)dyt+1dωt

=

∫
fyt|,ωt(yt|ωt)fIt|ωt(It|ωt)

∫
fωt|yt+1(ωt|yt+1)g(yt+1)dyt+1dωt

=

∫
fyt|ωt(yt|ωt)fIt|ωt(It|ωt)[Lωt|yt+1g](ωt)dωt

=

∫
fyt|ωt(yt|ωt)[∆It|ωtLωt|yt+1g](ωt)dωt

= [Lyt|ωt∆It|ωtLωt|yt+1g](ωt),

where ∆It|ωt is the diagonal operator mapping g(ωt) to the function fIt|ωt(It|ωt)g(ωt). There-

fore, the following are equivalent:

Lyt,It|yt+1 = Lyt|ωt∆It|ωtLωt|yt+1 . (36)

Integrating (36) over It yields Lyt|yt+1 = Lyt|ωtLωt|yt+1 . Then using Assumption 3.2:

Lωt|yt+1 = L−1yt|ωtLyt|yt+1 . (37)

45



Plugging (37) into (36):

Lyt,It|yt+1 = Lyt|ωt∆It|ωt(L
−1
yt|ωtLyt|yt+1).

Note that the operator Lyt|yt+1 = Lyt|ωtLωt|yt+1 is injective due to Assumption 3.2. Then we

have the following:4

Lyt,It|yt+1L
−1
yt|yt+1

= Lyt|ωt∆It|ωtL
−1
yt|ωt . (38)

The LHS of (38) is a function of observed data, which can be considered as known. This

expression states that the LHS admits a spectral decomposition that takes the form of an

eigenvalue-eigenfunction decomposition. To identify the unobserved densities of interest,

the representation in (38) and its decomposition must be unique. This is guaranteed by

Theorem XV.4.5 in Dunford and Schwartz (1971) and Assumptions 3.3 and 3.4. Then

applying Theorem 1 in Hu and Schennach (2008) identifies fyt|ωt,Zt , fIt|ωt,Zt and fωt|yt+1,Zt .

The marginal distribution of productivity is identified from

fωt =

∫
fyt+1,ωtdyt+1 =

∫
fωt|yt+1fyt+1dyt+1,

since fyt+1 is observed and fωt|yt+1 was identified from Theorem 3.1. The input demand

functions for mt and lt are identified since fωt is known. The next step is identification of

the Markov process fωt+1|ωt using Corollary 3.1 and 3.2.

Proof of Corollary 3.1:

Note that the integral operator corresponding to the density fyt+1|ωt(yt+1|ωt) can be written

4The fact that injectivity of Lyt+1|ωt
implies injectivity of Lωt|yt+1

is non-trivial, but is guaranteed from
Lemma 1 in Hu and Schennach (2008).
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as:

[Lyt+1|ωtg](yt+1) =

∫
fyt+1|ωt(yt+1|ωt)g(ωt)dωt

=

∫ ∫
fyt+1,ωt+1|ωt(yt+1, ωt+1|ωt)dωt+1g(ωt)dωt

=

∫
fyt+1|ωt+1(yt+1|ωt+1)fωt+1|ωt(ωt+1|ωt)dωt+1g(ωt)dωt

=

∫ [
fyt+1|ωt+1(yt+1|ωt+1)

∫
fωt+1|ωt(ωt+1|ωt)g(ωt)dωt

]
dωt+1

=

∫ [
fyt+1|ωt+1(yt+1|ωt+1)[Lωt+1|ωtg](ωt+1)

]
dωt+1

= [Lyt+1|ωt+1Lωt+1|ωtg](ωt).

Hence:

Lyt+1|ωt = Lyt+1|ωt+1Lωt+1|ωt . (39)

Under stationarity, injectivity of Lyt|ωt is equivalent to injectivity of Lyt+1|ωt+1 , so that the

Markov law of motion fωt+1|ωt(ωt+1|ωt) is identified using

Lωt+1|ωt = Lyt+1|ωtL
−1
yt+1|ωt+1

, (40)

since fyt+1|ωt+1(yt+1|ωt+1) is equivalent to fyt|ωt(yt|ωt) under stationarity, fωt+1|ωt(ωt+1|ωt) is

identified since the densities fyt|ωt(yt|ωt) and fyt+1|ωt(yt+1|ωt) are identified from Theorem 3.1.

Proof of Corollary 3.2 :

In the absence of stationarity, the density fyt+1|ωt+1 is not the same as fyt|ωt . However, in

this case, the identification strategy and result from Theorem 3.1 can be reapplied using

observations (yt+2, yt+1, It+1).
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C Confidence Bands for Main Estimates

Figure 14: Output Elasticities

∗95% Point-wise confidence bands for output elasticities. See Figure 1

Figure 15: Output Elasticities (Over Productivity)

∗95% Point-wise confidence bands for output elasticities (over productivity percentiles). See Figure 2
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Figure 16: Effect of Productivity on Output Elasticities

∗95% Point-wise confidence bands for the marginal effects of productivity on output elasticities. See Figure
3.

Figure 17: Effect of Input Composition on Productivity

∗95% Point-wise confidence bands for the input composition effects on productivity. See Figure 4.
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Figure 18: Effect of Scale on Productivity

∗95% Point-wise confidence bands for scale effects on productivity. See Figure 5.

Figure 19: Productivity Persistence

∗95% Point-wise confidence bands for productivity persistence. See Figure 6.
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Figure 20: Higher Moments of the Conditional Productivity Distribution

∗95% Point-wise confidence bands for conditional dispersion, skewness, and kurtosis. See Figure 7.

Figure 21: Input Demand Responses to Productivity

∗95% Point-wise confidence bands for input demand responses to productivity. See Figure 8.

51



Figure 22: Impulse Response of an Innovation Shock to Productivity

∗95% Point-wise confidence bands for productivity impulse response functions. See Figure 9.

Figure 23: Impulse Response of an Innovation Shock to Investment

∗95% Point-wise confidence bands for investment impulse response functions. See Figure 10.
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Figure 24: Impulse Response of an Innovation Shock to Labor

∗95% Point-wise confidence bands for labor impulse response functions. See Figure 11.

Figure 25: Impulse Response of an Innovation Shock to Materials

∗95% Point-wise confidence bands for materials impulse response functions. See Figure 12.
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Figure 26: Impulse Response of an Innovation Shock to Misallocation

∗95% Point-wise confidence bands for misallocation impulse response functions. See Figure 13.

D Extensions

This section addresses the various extensions mentioned earlier in this paper. In Section

D.1, I compare estimates between R&D firms and non R&D firms. I apply the estimator to

study labor adjustment frictions in Section D.2. In Section D.3, I propose a correction to

possible selection bias arising from non-random firm exit.

D.1 R&D Activities

The first set of results in Figure 27 compares the estimates of productivity persistence be-

tween firms that do not perform and those that perform R&D. In panel (a), productivity

persistence is plotted at fixed percentiles of previous productivity and innovation shocks

for non-R&D firms. For low productivity firms, a low shock to productivity has a higher

persistency (0.894) than high shocks (0.505). For high productivity firms, large innovation

shocks have higher persistency (0.957) than low shocks (0.632). In panel (b), low produc-

tivity R&D firms have lower persistence than non-R&D firms hit by large negative shocks.

For high productivity R&D firms, large positive productivity shock have higher persistence

than non-R&D firms. Panel (c) reports persistence estimates for R&D firms evaluated at
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percentiles of the R&D distribution. One observation is that low R&D firms hit by large

negative shocks and high R&D firms hit by large positive shocks have a lower persistence in

productivity history. Overall these results suggest that R&D investment is an important fac-

tor which determines future productivity performance and that these effects vary depending

on the level of R&D expenditure.

Figure 27: Productivity Persistence for Non-performing and R&D Performing Firms

∗Panel (a): Estimates of average productivity persistence for non R&D firms evaluated at τξ and percentiles
of previous productivity. Panel (b): Estimates of productivity persistence for R&D firms evaluated at τξ and
percentiles of previous productivity averaged over R&D. Panel (c): Estimates of productivity persistence for
R&D firms evaluated at τξ and percentiles of R&D averaged over productivity.
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Figure 28: Higher Moments of the Conditional Productivity Distribution (Non R&D)

∗Panel (a): Conditional dispersion evaluated at different percentiles of previous productivity. Panel (b):
Conditional skewness evaluated at different percentiles of previous productivity. Panel (c): Conditional
kurtosis evaluated at different percentiles of previous productivity

Figure 29: Higher Moments of the Conditional Productivity Distribution (R&D)

∗ Panel (a): Conditional dispersion evaluated at different percentiles of previous productivity. Panel (b):
Conditional skewness evaluated at different percentiles of previous productivity. Panel (c): Conditional
kurtosis evaluated at different percentiles of previous productivity

In Figures 28 and 29 I plot the estimates of the higher-moments of the conditional pro-

ductivity distribution from the quantile estimates for non R&D and R&D performing firms.
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Compared to Figure 7, non R&D firms exhibit high asymmetry in conditional dispersion.

Conditional on a history of low productivity, dispersion is higher for non R&D firms than in

the combined sample. A similar pattern of conditional skewness exists in this sub-sample,

however the magnitude of skewness is much larger at both ends of the productivity distribu-

tion. I also find that conditional kurtosis is decreasing in productivity histories. For R&D

performing firms, I find a decreasing pattern of conditional dispersion. Conditional on a

history of high productivity, dispersion is low compared to firms with a low productivity his-

tory. The pattern of conditional skewness remains the same, however only low productivity

firms are associated with high, positive skewness. Skewness for high productivity firms is

similar as the combined sample. I also find a decreasing pattern in conditional kurtosis.

The next set of results in Figure 30 plots the returns to R&D measured by the elas-

ticity of productivity with respect to R&D expenditures, evaluated at various percentiles

of productivity, innovation shocks, and R&D. In panel (a), R&D returns are increasing in

productivity levels and productivity shocks, although there is a sharp decrease in the highest

productivity shock for low productivity firms. In panel (b), R&D returns are increasing in

R&D expenditures and productivity shocks.

Figure 30: Returns to R&D

∗Panel (a): Returns to R&D for firms evaluated at τξ and percentiles of previous productivity averaged
over R&D. Panel (b): Returns to R&D for firms evaluated at τξ and percentiles of R&D averaged over
productivity.

The productivity responses to innovation shocks for non R&D and R&D firms are re-

ported in Figures 31 and 32, which shows the impact of a large negative shock (τξ = 0.1)

in panel (a-c) and a large positive shock (τξ = 0.9) in panel (d-f) at various levels of initial

productivity τω1 = (0.1, 0.5, 0.9). Following a negative productivity shock, a non R&D firm
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with a history of high productivity faces a 2% larger decrease in productivity than an R&D

firm. Following a positive shock, a non R&D firm with a history of low productivity has a

6.5% larger increase in productivity than an R&D performing firm.

The investment responses to innovation shocks are reported in Figures 33 and 34, which

shows the impact of a large negative shock (τξ = 0.1) in panel (a-c) and a large positive

shock (τξ = 0.9) in panel (d-f) at various levels of investment τi = (0.1, 0.5, 0.9) for non R&D

firms and R&D firms. The investment paths are much different compared to the paths in the

combined sample in Figure 10. Overall, the adjustment of investment after a productivity

shock appears to be more rapid for larger investment firms as opposed to smaller investment

firms. There is distinct heterogeneity between non R&D and R&D firms. For example,

following a positive productivity shock in year 7, a non R&D firm with low investment and

low productivity history increases investment by 4% more than a similar R&D performing

firm.

The labor responses to innovation shocks are reported in Figure 35 and 36, which shows

the impact of a large negative shock (τξ = 0.1) in panel (a-c) and a large positive shock

(τξ = 0.9) in panel (d-f) at various levels of labor demand τl = (0.1, 0.5, 0.9) for non R&D

firms and R&D firms. The overall finding is that there are not significant heterogeneous

labor responses between these types of firms. The materials responses to innovation shocks

are reported in Figure 37 and 38, which shows the impact of a large negative shock (τξ = 0.1)

in panel (a-c) and a large positive shock (τξ = 0.9) in panel (d-f) at various levels of materials

demand τm = (0.1, 0.5, 0.9) for non R&D firms and R&D firms. Similar to the results for

labor paths, the paths for materials do not appear heterogeneous for the two types of firms.
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Figure 31: Impulse Response of an Innovation Shock to Productivity (Non R&D Firms)

∗Top row: Differences in productivity between firms hit with low productivity shock τξ = 0.1 and medium
shock τξ = 0.5 at different levels of initial productivity. Bottom row: Differences in productivity between
firms hit with high productivity shock τξ = 0.9 and medium shock τξ = 0.5 at different levels of initial
productivity.

Figure 32: Impulse Response of an Innovation Shock to Productivity (R&D Firms)

∗Top row: Differences in productivity between firms hit with low productivity shock τξ = 0.1 and medium
shock τξ = 0.5 at different levels of initial productivity. Bottom row: Differences in productivity between
firms hit with high productivity shock τξ = 0.9 and medium shock τξ = 0.5 at different levels of initial
productivity.
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Figure 33: Impulse Response of an Innovation Shock to Investment (Non R&D Firms)

∗Top row: Differences in investment between firms hit with low productivity shock τξ = 0.1 and medium
shock τξ = 0.5 at different levels of initial productivity. Bottom row: Differences in investment between
firms hit with high productivity shock τξ = 0.9 and medium shock τξ = 0.5 at different levels of initial
productivity. Low, medium, and high initial productivity paths are denoted by the red, green, and blue lines
respectively.

Figure 34: Impulse Response of an Innovation Shock to Investment (R&D Firms)

∗Top row: Differences in investment between firms hit with low productivity shock τξ = 0.1 and medium
shock τξ = 0.5 at different levels of initial productivity. Bottom row: Differences in investment between
firms hit with high productivity shock τξ = 0.9 and medium shock τξ = 0.5 at different levels of initial
productivity. Low, medium, and high initial productivity paths are denoted by the red, green, and blue lines
respectively.
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Figure 35: Impulse Response of an Innovation Shock to Labor (Non R&D Firms)

∗Top row: Differences in labor between firms hit with low productivity shock τξ = 0.1 and medium shock
τξ = 0.5 at different levels of initial productivity. Bottom row: Differences in labor between firms hit with
high productivity shock τξ = 0.9 and medium shock τξ = 0.5 at different levels of initial productivity. Low,
medium, and high initial productivity paths are denoted by the red, green, and blue lines respectively.

Figure 36: Impulse Response of an Innovation Shock to Labor (R&D Firms)

∗Top row: Differences in labor between firms hit with low productivity shock τξ = 0.1 and medium shock
τξ = 0.5 at different levels of initial productivity. Bottom row: Differences in labor between firms hit with
high productivity shock τξ = 0.9 and medium shock τξ = 0.5 at different levels of initial productivity. Low,
medium, and high initial productivity paths are denoted by the red, green, and blue lines respectively.
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Figure 37: Impulse Response of an Innovation Shock to Materials (Non R&D Firms)

∗Top row: Differences in materials between firms hit with low productivity shock τξ = 0.1 and medium shock
τξ = 0.5 at different levels of initial productivity. Bottom row: Differences in materials between firms hit
with high productivity shock τξ = 0.9 and medium shock τξ = 0.5 at different levels of initial productivity.
Low, medium, and high initial productivity paths are denoted by the red, green, and blue lines respectively.

Figure 38: Impulse Response of an Innovation Shock to Materials (R&D Firms)

∗Top row: Differences in materials between firms hit with low productivity shock τξ = 0.1 and medium shock
τξ = 0.5 at different levels of initial productivity. Bottom row: Differences in materials between firms hit
with high productivity shock τξ = 0.9 and medium shock τξ = 0.5 at different levels of initial productivity.
Low, medium, and high initial productivity paths are denoted by the red, green, and blue lines respectively.
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D.2 Labor Dynamics

This section extends the labor demand function to include lagged labor from Equation (7).

In Figure 39, I report impulse response function for firms of different labor demand size

who are hit with differently sized shocks to previous labor. The results show heterogeneous

responses for high labor demand firms hit by low shocks and low labor demand firms hit by

high shocks.

Figure 39: Impulse Response of Adjustment Shocks to Labor

∗Top row: Difference between firms hit with low labor shock τlt−1
= 0.1 and medium shock τlt−1

= 0.5 at
different levels of labor demand. Second row: Difference between firms hit with labor shock τlt−1

= 0.25 and
medium shock τlt−1 = 0.5 at different levels of labor demand. Third row: Difference between firms hit with
labor shock τlt−1 = 0.75 and medium shock τlt−1 = 0.5 at different levels of labor demand. Bottom row:
Difference between firms hit with high labor shock τlt−1

= 0.9 and medium shock τlt−1
= 0.5 at different

levels of labor demand. Labor demand is evaluated at percentiles of lagged labor averaged over capital and
productivity.
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D.3 Correcting for Selection Bias

The estimation procedure presented here can be adapted to correct for non-random firm exit

in the framework of Olley and Pakes (1996) and Dermirer (2020). An exit rule is part of

a Markov perfect Nash equilibrium, which determines a threshold level of productivity for

which firms will stay in operation. The decision to stay in operation or exit is given by:

χit =

1 if ωit ≥ ωt(kit)

0 otherwise.
(41)

The productivity threshold is determined by a firm’s current capital stock. Firms with larger

capital stocks can expect larger future returns for any given level of current productivity.

Using the specification for the productivity process in Equation (20), the decision to stay in

operation can be written as:

Qω
t (ωit−1,ξit) ≥ ωt(kit),

ξit ≥ Qω−1

t (ωit−1, ωt(kit)),

ξit ≥ Qω−1

t (ωit−1, kit),

ξit ≥ ωt(ωit−1, kit),

(42)

where the second inequality follows from the monotonicity restriction in Assumption 2.2.

Provided that the Markov process for productivity is exogenous Pr(ωit|ωit−1, Iit−1) = Pr(ωit|ωit−1),
the innovation shocks to productivity will be independent of current capital stock since

kit ∈ Iit−1. This allows me to characterize the conditional distribution of innovation shocks

as

ξit|(kit, ωit−1) ∼ U(0, 1).

The cutoff for which firms stay in operation can written as

ωt(ωit−1, kit) = Prob(χit = 1|ωit−1, kit) ≡ p(ωit−1, kit). (43)

Therefore, firms that receive an innovation shock greater than p(ωit−1, kit) will continue to

operate. The distribution of productivity innovations conditional on (kit, ωit−1) and χit = 1

is

ξit|(kit, ωit−1, χit = 1) ∼ U(p(ωit−1, kit), 1). (44)
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To see how this could be used to correct for selection bias, consider a simple linear random

coefficient model for productivity: ωit = ρ(ξit)ωit−1. The independence assumptions imply:

Prob(ωit ≤ ρ(τ)ωit−1|ωit−1, kit, χit = 1)

= Prob(ξit ≤ τ |ωit−1, kit, χit = 1)

=
τ − p(ωit−1, kit)
1− p(ωit−1, kit)

≡ G(τ, p).

(45)

This implies that for a current draw of productivity ω
(m)
it , the persistence parameter, ρ(τ),

can be estimated using the rotated quantile regression:

ρ̂(τq)
(s+1) = argmin

ρ(τq)

N∑
i=1

T∑
t=2

M∑
m=1

χit

[
G(τq, p)(ω

(m)
it −ρω

(m)
it−1)

+ +(1−G(τq, p))(ω
(m)
it −ρω

(m)
it−1)

−
]
,

(46)

where a+ = max(a, 0), a− = max(−a, 0), and p(ωit−1, kit) can be estimated from a probit

regression on ω
(m)
it−1 and kit. This estimator is similar to the one proposed by Arellano

and Bonhomme (2017), although in my case the shift in the productivity rank is easier to

characterize from the structural model used here. Implementing this selection correction is

straight-forward in standard quantile regression packages. For example, in quantreg for R,

this requires using an individual-specific τ in the dual equality constraints. The estimator

uses the Frisch-Newton linear programming algorithm in Portnoy and Koenker (1997), which

can be implemented using rq.fit.fnb. The consequence of selection bias in this setting, is

the entire process of ρ(τ) may be biased. The amount of bias is likely to be larger at the

bottom of the productivity distribution, where the probability of exit is higher. Therefore,

I must also control for selection bias for τ ≤ τ1 and τ > τQ in the original model. I do this

by adopting a control function approach in the tails. To illustrate, I use the simple AR(1)

model for productivity at τ ≤ τ1 :

ωit = ρ(τ1)ωit−1 + vit + uit, ωit ≤ ρ(τ1)ωit−1, (47)

where vit denotes the unobservable component of productivity that is correlated to the firm’s

exit decision, and uit denotes an i.i.d. shock that is assumed to be exponentially distributed.

The issue of selection arises because

E[ωit|ωit−1, χit = 1] = ρ(τ1)ωit−1 +E[vit|ωit−1, χit = 1]. (48)
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Note that E[vit|ωit−1, χit = 1] 6= 0 causes selection bias for productivity estimates at τ ≤ τ1.

Provided that the density of ωit conditional on ωit−1 is positive in a region about ωit, following

Olley and Pakes (1996), I invert the selection equation as a function of the propensity score

p = p(ωit−1, kit) and ωit−1. Therefore, I have the following equation:

E[ωit|ωit−1, χit = 1] = ρ(τ1)ωit−1 + s1(p, ωit−1), (49)

where s1(·) denotes the sample selection correction function. I approximate this function by

a second degree polynomial in p and ωit−1. Then, an estimate for the exponential parameter

is updated from

λ̂−(s)ρ =
−
∑N

n=1

∑T
t=2

∑M
m=1 1{ω

(m)
t ≤ ρ̂(τ1)

(s)ω
(m)
t−1 + ŝ1(pt, ω

(m)
t−1)}∑N

n=1

∑T
t=2

∑M
m=1(ω

(m)
t − ρ̂(τ1)(s)ω

(m)
t−1 − ŝ1(pt, ω

(m)
t−1))1{ω(m)

t ≤ ρ̂(τ1)(s)ω
(m)
t−1 + ŝ1(pt, ω

(m)
t−1)}

.

(50)

The algorithm proceeds similarly as before. Given an initial parameter value θ̂0, iterate

on s = 0, 1, 2, . . . , in the following two-step procedure until convergence to a stationary

distribution:

1. Stochastic E-Step: Draw M values ω
(m)
i = (ω

(m)
i1 , ω

(m)
i2 , . . . , ω

(m)
iT ) from

gi(ω
T
i ; θ̂(s)) = f(ωTi |yTi , kTi , lTi ,mT

i , i
T
i , χ

T
i ; θ̂(s)) ∝

T∏
t=1

f(yit|kit, lit,mit, ωit, χ
T
i ; β̂(s))f(lit|kit, ωit, χTi ; α̂l

(s))f(mit|kit, lit, ωit, χTi ; α̂(s)
m )

× f(iit|kit, ωit, χTi ; δ̂(s))
T∏
t=2

f(ωit|ωit−1, χTi ; ρ̂(s))p(kit, ωit−1; ρ̂
(s)
χ )f(ωi1|ki1; ρ̂(s)ω1

).
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2. Maximization Step: For q = 1, . . . , Q, solve

β̂(τq)
(s+1) = argmin

β(τq)

N∑
i=1

T∑
t=1

M∑
m=1

ψτq

(
yit −Qy

t (kit, lit,mit, ω
(m)
it ; β(τq))

)
,

α̂l(τq)
(s+1) = argmin

α`(τq)

N∑
i=1

T∑
t=1

M∑
m=1

ψτq

(
lit −

J∑̀
j=1

α`,j(τq)φl,j(kit, ω
(m)
it )

)
,

α̂m(τq)
(s+1) = argmin

αm(τq)

N∑
i=1

T∑
t=1

M∑
m=1

ψτq

(
mit −

Jm∑
j=1

αm,j(τq)φm,j(kit, lit, ω
(m)
it )

)
,

δ̂(τq)
(s+1) = argmin

δ(τq)

N∑
i=1

T∑
t=1

M∑
m=1

ψτq

(
iit −

Jι∑
j=1

δj(τq)φι,j(kit, ω
(m)
it )

)
,

ρ̂(s+1)
χ = argmin

ρχ

N∑
i=1

T∑
t=2

M∑
m=1

(
χit ln Φ(w(kit, ω

(m)
it−1; ρχ)) + (1− χit) ln(1− Φ(w(kit, ω

(m)
it−1; ρχ)))

)
,

ρ̂(τq)
(s+1) = argmin

ρ(τq)

N∑
i=1

T∑
t=2

M∑
m=1

χit

(
G(τq, p̂)(ω

(m)
it − ρω

(m)
it−1)

+ + (1−G(τq, p̂))(ω
(m)
it − ρω

(m)
it−1)

−
)
,

ρ̂ω1(τq)
(s+1) = argmin

ρω1 (τq)

N∑
i=1

M∑
m=1

ψτq

(
ω
(m)
i1 −

Jω1∑
j=1

ρω1(τq)φω1,j(ki1)

)
,

where ψτ (u) = (τ−1{u < 0})u is the “check” function from quantile regression. Here, ρχ are

the parameters estimated from a probit regression of the exit decision on capital and lagged

productivity from the third-to-last equation in the above M-step procedure. I approximate

the function w(kit, ωit−1; ρχ) by a second-order polynomial in kit and ωit−1. Kernel density

estimators can also be employed to estimate the selection probabilities. The exponential

parameter for τ ≤ τ1 is updated using Equation (50) and for τ > τQ:

λ̂+(s)
ρ =

∑N
n=1

∑T
t=2

∑M
m=1 1{ω

(m)
t > ρ̂(τQ)(s)ω

(m)
t−1 + ŝ2(pt, ω

(m)
t−1)}∑N

n=1

∑T
t=2

∑M
m=1(ω

(m)
t − ρ̂(τQ)(s)ω

(m)
t−1 − ŝ2(pt, ω

(m)
t−1))1{ω(m)

t > ρ̂(τQ)(s)ω
(m)
t−1 + ŝ2(pt, ω

(m)
t−1)}

,

(51)

where ŝ2(·) denotes another sample selection correction function. Selection correction meth-

ods for nonseparable quantile models are studied by Arellano and Bonhomme (2017), but to

my knowledge, has not been applied to non-linear panel data models. This extension may

provide a useful starting point for combining the two literatures.

To examine the extent of selection bias, I re-estimate the original model with the proposed

correction. Figure 40 reports the estimates of the average capital elasticity corrected for

selection. Compared to the uncorrected estimates from Figure 1, the corrected elasticities
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are uniformly smaller. This makes it difficult to support that selection leads to a negative

bias in the capital coefficient as argued by OP. The estimates for labor and materials are

almost identical.

Figure 40: Output Elasticities (Selection Corrected)

∗Panel (a): Capital elasticity evaluated at τη and percentiles of capital τk averaged over values of ωit and
(lit,mit) that correspond to τk. Panel (b): Labor elasticity evaluated at τη and percentiles of labor τl
averaged over values of ωit and (kit,mit). Panel (c): Materials elasticity evaluated at τη and percentiles of
materials τm averaged over values of ωit and (kit, lit).

Figure 41: Productivity Persistence (Selection Corrected)

∗Estimates of average productivity persistence evaluated at τξ and percentiles of previous productivity.
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Figure 41 plots the selection corrected productivity persistence over percentiles of inno-

vation shocks and productivity histories. The difference between these estimates and the

uncorrected estimates in Figure 6 reveals a higher estimate of persistence associated with

firms with histories of low productivity subject to a negative productivity shock. This result

is intuitive, as these types of firms have a higher probability of exiting the market.

Figure 42: Higher Moments of the Conditional Productivity Distribution (Selection Cor-
rected)

∗Panel (a): Conditional dispersion evaluated at different percentiles of previous productivity. Panel (b):
Conditional skewness evaluated at different percentiles of previous productivity. Panel (c): Conditional
kurtosis evaluated at different percentiles of previous productivity

In Figure 42, I break down the characteristics of the conditional distribution using the

estimates from the selection corrected productivity process. The results in panel (a) show

a higher degree of asymmetry in uncertainty than Figure 7. Selection corrected estimates

reveal that dispersion is high for both firms with low histories of productivity and high

histories. Additionally, panel (b) reveals that skewness is negative, conditional on any rank

of productivity histories. Lastly, estimates of conditional kurtosis share a similar pattern as

the uncorrected estimates, although the selection corrected estimates are slightly higher.

The productivity responses to innovation shocks are reported in Figure 43, which show the

impact of a large negative shock (τξ = 0.1) in panel (a-c) and a large positive shock (τξ = 0.9)

in panel (d-f) for various levels of initial productivity τω1 = (0.1, 0.5, 0.9). For firms with the

lowest initial productivity, a large negative innovation shock decreases productivity by 19.9%,

while a large positive shock increases productivity by 14.4%. For firms with the highest initial
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productivity, a large negative innovation shock decreases productivity by 21.4% and a large

positive shock increases productivity by about 14.7%. The estimates correcting for selection

have the most pronounced differences when firms are hit by low productivity shocks, as more

firms are likely to exit at this level. After correcting for selection, productivity decreases by

a larger amount. This is because conditional on staying in the market, industry productivity

tends to appear higher than the unobserved distribution of productivity because of firm exits

at low productivity realizations. That is, there is positive selection into staying in operation.

Figure 43: Impulse Response of an Innovation Shock to Productivity
(Selection Corrected)

∗Top row: Differences in productivity between firms hit with low productivity shock τξ = 0.1 and medium
shock τξ = 0.5 at different levels of initial productivity. Bottom row: Differences in productivity between
firms hit with high productivity shock τξ = 0.9 and medium shock τξ = 0.5 at different levels of initial
productivity.

The investment responses to innovation shocks are reported in Figure 44, which shows

the impact of a negative productivity shock in panel (a-c) and a positive productivity shock

in panel (d-f) for various levels of investment demand τi = (0.1, 0.5, 0.9) and initial produc-

tivities. The main finding is that for low and medium investment levels, firms with histories

of low productivity have a larger drop in investment following a bad productivity shock after

correcting for selection.
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Figure 44: Impulse Response of an Innovation Shock to Investment
(Selection Corrected)

∗Top row: Differences in capital between firms hit with low productivity shock τξ = 0.1 and medium shock
τξ = 0.5 at different levels of investment demand. Bottom row: Differences in capital between firms hit with
high productivity shock τξ = 0.9 and medium shock τξ = 0.5 at different levels of investment demand. Low,
medium, and high initial productivity paths are denoted by the red, green, and blue lines respectively.

Figure 45: Impulse Response of an Innovation Shock to Labor
(Selection Corrected)

∗Top row: Differences in labor between firms hit with low productivity shock τξ = 0.1 and medium shock
τξ = 0.5 at different levels of labor demand. Bottom row: Differences in labor between firms hit with high
productivity shock τξ = 0.9 and medium shock τξ = 0.5 at different levels of labor demand. Low, medium,
and high initial productivity paths are denoted by the red, green, and blue lines respectively.
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Figure 46: Impulse Response of an Innovation Shock to Materials
(Selection Corrected)

∗Top row: Differences in materials between firms hit with low productivity shock τξ = 0.1 and medium shock
τξ = 0.5 at different levels of materials demand. Bottom row: Differences in materials between firms hit
with high productivity shock τξ = 0.9 and medium shock τξ = 0.5 at different levels of materials demand.
Low, medium, and high initial productivity paths are denoted by the red, green, and blue lines respectively.

The labor responses to innovation shocks are reported in Figure 45, which shows the

impact of a negative productivity shock in panel (a-c) and a positive productivity shock in

panel (d-f) for various levels of labor demand τl = (0.1, 0.5, 0.9) and initial productivities. In

Figure 46, I plot similar paths for materials. After correcting for selection, there is a larger

drop in demand for labor and materials following a negative productivity shock.

In conclusion, the extensions in the Appendix suggest that heterogeneity can be pro-

nounced due to labor adjustment frictions, R&D performance, and correcting for econometric

issues such as selection bias.
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